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For two-component assemblies, an inherent structure diagram (ISD) is the relationship between
set inter-subunit energies and the types of kinetic traps (inherent structures) one may obtain from
those energies. It has recently been shown that two-component ISDs are apportioned into regions or
plateaux within which inherent structures display uniform features (e.g., stoichometries and morphol-
ogies). Interestingly, structures from one of the plateaux were also found to be robust outcomes of
one type of non-equilibrium growth, which indicates the usefulness of the two-component ISD in
predicting outcomes of some types of far-from-equilibrium growth. However, little is known as to how
the ISD is apportioned into distinct plateaux. Also, while each plateau displays classes of structures
that are morphologically distinct, little is known about the source of these distinct morphologies. This
article outlines an analytic treatment of the two-component ISD and shows that the manner in which
any ISD is apportioned arises from a single unitless order parameter. Additionally, the analytical
framework allows for the characterization of local properties of the trapped structures within each
ISD plateau. This work may prove to be useful in the design of novel classes of robust nonequilibrium
assemblies. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936266]

I. INTRODUCTION

An important goal of molecular design is to facilitate
the robust self-assembly of elaborate structures from smaller
components. Here, “robust” refers to the capacity of the same
components starting off in varying environmental conditions
to result in the same or similar outcome.1–6 The outcome of
a robust molecular assembly process is traditionally thought
to be the equilibrium (lowest-free-energy) structure, with
non-equilibrium structures posing hurdles (kinetic traps)
towards that process.1–11 Yet, some regimes of far-from-
equilibrium growth have also been shown to result in robust
outcomes,12–15 which indicates novel (non-equilibrium) routes
towards building robust molecular assemblies.

While non-equilibrium outcomes in relatively detailed
and complex processes have been studied—e.g., in the
process of virus capsid assembly6 and DNA hybridization10—
computational limitations prevent more systematic studies
of such systems. Alternatively, simpler ordered frameworks
formed from two types of components have been useful in
systematically distinguishing the outcomes of equilibrium and
non-equilibrium regimes for nucleation and growth.12–19 This
report considers growth post nucleation, where, depending
on the rate of growth, both equilibrium and non-equilibrium
results can be resolved.14,15 For convenience, this report refers
to the two component types as “red” and “blue” (as is the
convention in Refs. 14 and 15).

Assuming favorable energetics, near-equilibrium growth
is attained when the rate of growth is so slow that binding is
nearly reversible. The first utility of two-component growth
is that the outcomes of equilibrium growth are relatively
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easy to predict. For example, if the heterogeneous energy of
interaction is dominantly the lowest in energy, analogous
to the components sodium (Na+) and chloride (Cl−) in
a crystal, the equilibrium outcome is “binary” (otherwise
the outcomes dominantly display one or the other subunit).
Here, binary indicates that each neighbor is surrounded by
neighbors of opposite type. In a two-dimensional (2d) square
lattice, such a binary structure resembles a checkerboard
structure (Fig. 1(a)). A convenient metric to characterize
binary assemblies is the fraction of blues in the assembly ( fb),
which in the case of a binary solid is 0.5 (like in Na+Cl−).

When growing an assembly at far-from-equilibrium rates
(i.e., at much greater growth rates), the expected equilibrium
outcomes (such as structures displaying fb = 0.5 for the
system above) are not the outcomes that one encounters.12–17,19

This is because, at particular growth rates and subunit-subunit
energetics, kinetic traps involving multiple components within
the bulk of the assembly are not permitted to rearrange
into equilibrium features before those defects get buried.20

Mostly, non-equilibrium outcomes are highly sensitive to
solution conditions such as the combined and relative
concentration of the two components in solution. However,
in some cases, the non-equilibrium outcomes are actually
robust to some growth conditions.12–15 Presently, while
such robust yet non-equilibrium assemblies may present
us with new ways to produce novel and controllable
materials, an overarching framework for making predictions
for such processes is lacking, especially because most existing
frameworks for predicting molecular outcomes are based on
equilibrium statistical mechanics (see discussions in Refs. 18
and 19).

Refs. 14 and 15, which will be focused on in more
detail here, describe a non-equilibrium growth scenario
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FIG. 1. Equilibrium versus nonequilibrium structures obtained from growth.
Given two components (“red” and “blue”) whose heterogeneous interaction
energy is the lowest (i.e., ϵbr < ϵbb, ϵrr), near-equilibrium growth results in
a “checkerboard” patterned structure with equal ratio of blues and reds
( fb= 0.5), shown in (a) for a 2d square lattice (henceforth, the “red” compo-
nents are shown faded for increased contrast compared to blue components).
Interestingly, at a particular interaction energy regime (ϵbr < ϵrr≡ 0 < 2|ϵbr|
< ϵbb), while the equilibrium structure remains checkerboard (a), a new class
of non-equilibrium structures—compositional polycrystalline assemblies (b)
with a particular fb (∼0.364)—form from a range of non-equilibrium growth
regimes and red:blue ratios in solution14,15 (also shown in Figs. 2(a) and
2(b)). This particular class of polycrystalline structure is but one of a range of
possible structures available within the inherent structure diagram (Fig. 2(d)).

that yields assemblies that are robust to multiple solution
properties: growth rate and solution stoichometries. The model
assumes the following hierarchy of subunit-subunit interaction
energies:14,15 the red-blue interaction energy (ϵbr) is the most
favorable, the red-red interaction energy (ϵ rr) is negligible and
intermediate in strength, and the blue-blue interaction energy
(ϵbb) is high enough to never permit its occurrence during
growth/assembly (all interaction energies in this manuscript
are taken to be the equivalent of binding free energies in
actual molecules). These stipulations equate to the hierarchy

ϵbr < ϵ rr ≡ 0 < 2|ϵbr| < ϵbb. Subunit growth was simulated on
a lattice (Fig. 2(a); also see Section II B), which yielded, in
Refs. 14 and 15, the following results.

At slow, near-reversible, growth rates (µ is taken as
a proxy), the expected equilibrium outcome is obtained
(µ = −15 always yields fb = 0.5; Fig. 2(b)). However, some
faster growth rates (about −2 < µ < 8; “⋆” in Fig. 2(b))
yield fb values that deviate from the equilibrium fb. Yet,
these structures are still robust to both a range of growth
rates and solution stoichiometries.14,15 Robustness to growth
rate (∝ µ) is evident in the presence of a plateau (⋆) per
curve in Fig. 2(b); robustness to solution stoichiometry is
evident in the adherence of all “⋆” plateaux to a single
magic number ( fb ≈ 0.364), regardless of the distinct ratios of
red:blue set in solution ( f s

b = 0.2,0.5,0.8). The plateau “⋆”
describes a range of growth rates that are neither reversible nor
irreversible to the chosen interactions energies: they describe
a partially reversible regime of growth where some types of
binding are allowed to reverse (e.g., r–r) while some bind
irreversibly (e.g., r–b).14,15 The nonequilibrium assemblies
may be termed as “compositional polycrystals”14,15 whose
“grains” are patches of equilibrium regions (checkerboard) and
whose boundaries constitute only red components (Fig. 1(b)).
The word “compositional” in this term is meant to indicate
that, ignoring color, the framework would be fully occupied
and ordered.14,15

Interestingly, these polycrystalline structures obtained via
partially reversible growth are also obtained via a simpler
sampling protocol (Fig. 2(c); see Section II C)14,15 that
samples for inherent structures.21–23 Inherent structures were
obtained by a two-state sampling technique that allows only

FIG. 2. Previously discussed growth (a) and (b)15 and inherent structure sampling (c) and (d).14 As replicated from a previous study,15 Monte Carlo simulations
of growth ((a) see Section II B) at a certain energy regime result in assemblies whose composition (fractions of blues; fb) remain robusts to both a range of
growth rates and relative solution concentrations (⋆ in (b)).14,15 Inherent structure sampling of a randomly occupied two-component lattice model ((c) see
Section II C) results in regions (plateaux) of interaction space within which inherent structures describe uniform fb (d).14 Interestingly, the robust structures
obtained from growth at partially reversible rates (⋆) are identical to those obtained from plateau 1 of the inherent structure diagram, regardless of a range of
starting configurations.14,15 The structures represent a class of compositional polycrystals (Fig. 1(b)).
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energetically favorable or neutral color switches (Fig. 2(c)).
Inherent structure sampling was applied to a range of random
initial configurations at particular points in (ϵbb,ϵbr)-space
(ϵ rr ≡ 0 with no loss of generality14). The resulting average
fb as a function of (ϵbb,ϵbr), which may be referred to as
an inherent structure diagram (ISD), is shown in Fig. 2(d).
Interestingly, the ISD is apportioned into discrete regions
(plateaux) within which the structures all describe nearly
identical fb (Fig. 3). The region within the ISD that describes
plateau 1 describes structures that are identical to those
found from partially reversible growth (⋆ in Fig. 2(b)):
structures within plateau 1 are compositional polycrystals
(Fig. 1(b)) whose fb s are identical to those obtained from
partially reversible growth. Additionally, all points within
plateau 1 exclusively satisfy the interaction energy relationship
that was used to grow the non-equilibrium structures
(Fig. 2(b)), namely, ϵbr < ϵ rr ≡ 0 < 2|ϵbr| < ϵbb. This indicates
a substantial connection between the structures available
within an inherent structure diagram and the outcomes of
some types of non-equilibrium growth; the other plateaux
in the inherent structure diagram—each describing potential
materials with specific local structural properties (Fig. 5)—
may, too, lead to the nonequilibrium growth of other materials
with other magic numbers.

FIG. 3. Each plateau in (a) displays homogeneous fb (b) and distinct classes
of polycrystalline inherent structure (c). It has already been shown that
inherent structures observed in plateau 1 of the inherent structure diagram
or ISD ((a) Fig. 2(d)) represent compositional polycrystals with binary
domains/grains and all-red grain boundaries.14 Interestingly, all other non-
trivial regions of the ISD (plateaux 2 through 4) also describe distinct classes
of compositional polycrystals, whose structures are distinguished by distinct
grain boundaries (e.g., plateau 4 describes boundaries that are all blue).
As indicated by (b), while each plateau describes a range of compositional
polycrystals, each structure within the same plateau describes the same fb.

While the potential exists for inherent structures to
explain the outcomes of two-component out-of-equilibrium
assemblies, little is known about what determines the plateaux
evident in the ISD. This manuscript describes a pen-and-paper
model that will be used to show that each ISD plateau, as
well as the properties (local environments) of the inherent
structures within each plateau, are consequences of the local
connectivity (degree) of the assembly framework (lattice).
Specifically, the formalism developed below predicts (i) the
boundaries of potential plateaux in any two-component ISD,
and (ii) local environments of each plateau-specific inherent
structure. This report also shows that the local rules developed
here cannot predict the actual magic ratios ( fb) each plateau
displays, as those are a matter of global (not local) lattice
connectivity.14

II. NUMERICAL METHODS DESCRIBED PREVIOUSLY

This section is meant to accompany the discussions in
the introduction pertaining to the correspondence between
outcomes of non-equilibrium growth and inherent structure
sampling.14,15

A. Interaction graphs used in the Monte
Carlo sampling

Any arbitrary interaction network (graph) may be used
in our sampling procedure below. Particular graphs used here
are the periodically connected square lattices in dimension
d (d ∈ {1,2, . . . ,5}) and the nbo lattice. The nbo lattice24

represents the interaction network observed in a metal-organic
framework (MOF-2000) described before.14 The periodic cell
of the nbo graph is as follows:

(nbo topology; image source: Wikipedia25).
Note that the higher-dimension square lattices (d > 3),

although unnatural, are useful to understand materials
characterized by higher degrees or coordination number.

B. Method 1: Monte Carlo sampling algorithm
for nucleated growth (Fig. 2(a))

The sluggish dynamics of particles within a solid is
a primary cause of kinetic trapping within a growing
multicomponent assembly.15 Due to this simple physical
origin, kinetic trapping from growth can be reproduced
by simple physical models that account for this slow
dynamic.12,13,16,17 This section discusses a lattice model of
growth similar to the models used in Refs. 11, 14, and 19
and identical to that used in Ref. 15. As sketched in
Fig. 2(a), each site on the lattice may be either occupied
by a subunit/component colored red or blue or by solvent that
is colored white. The energy of the system is

E =
edges
i, j

ϵC(i)C( j) +
nodes
i

µC(i). (1)
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The first sum iterates through all nearest-neighbor
interactions. Here C(i) = b, r, or w if node i is “blue,” “red,”
or “white,” respectively. ϵC(i)C( j) is the pairwise free energy of
interaction between two adjacent nodes i and j (simply called
interaction “interaction energy” henceforth); therefore, there
are six types of interaction energies: ϵbb, ϵbr, ϵ rr, ϵwb, ϵwr, and
ϵww.

The second sum iterates through all nodes, which
represent either subunits (b,r) or solvent (w). The chemical
potential term µC(i) is µ, − ln( f s

b), and − ln(1 − f s
b) for w, b,

and r, respectively.
In the absence of pairwise energetic interactions

(i.e., in implicit solution), the likelihood that a given
site will be white, blue or red is respectively {pw,pb,pr}
=
�
e−µ, f s

b,1 − f s
b

	 (1 + e−µ)−1.
The Monte Carlo growth simulations were performed

in the following manner. The simulation box was 400 sites
wide by 40 sites high. The first six columns were populated
with the equilibrium checkerboard structure. The sampling
protocol involved selecting a node at random and attempting
to change the color of that node. Given a white node, an
attempt is made to change its color to either red or blue, and
given a red/blue colored site, an attempt is made to change its
color to white.

When attempting to switch from white to colored, blue
is chosen with probability f s

b, and red is chosen otherwise.
Red-to-blue switches are not allowed, which mimics the idea
that binding and unbinding events are the dominant way in
which the configurational degrees of freedom evolve.

To maintain detailed balance with respect to the Eq. (1),
the acceptance rates for these moves were as follows (∆E is
the energy change resulting from the proposed move):

r → w : min(1, (1 − f s
b) exp[−∆E]),

w → r : min(1, (1 − f s
b)−1 exp[−∆E]),

b → w : min(1, f s
b exp[−∆E]),

w → b : min(1, ( f s
b)−1 exp[−∆E]).

The implicit solution abundances of red and blue are controlled
by the chemical potential term that appears in Eq. (1)
and therefore in the term ∆E. Our choice to insert blue
particles with likelihood f s

b does not by itself result in a
thermodynamic bias for one color over the other (because
this bias in proposal rate is countered by the non-exponential
factors in the acceptance rates). Instead, insertions are biased
so that the dynamics of association are consistent with the
thermodynamics of the model. For instance, if blue particles
are more numerous in solution than red ones, it is physically
appropriate to insert blue particles into the simulation box
more frequently than red particles. Consider the limit of
large positive µ: the “solid solution” that results as the box
fills irreversibly with colored particles will have a red:blue
stoichiometry equal to that of the notional solution only if blue
particles are inserted with likelihood f s

b. As a technical note,
the chemical potential term present in ∆E ends up simply
canceling the non-exponential factors in the acceptance rates,
but Ref. 15 chose to write acceptance rates as shown in order
to make clear which pieces are imposed by thermodynamics,
and which pieces are chosen for dynamical reasons. Note

that temperature is not defined explicitly but can be
considered to be subsumed into the energetic parameters
of the model.

The parameter values used to obtain Fig. 2(d) in kbT
are ϵbb = 70, ϵbr = −7, and ϵ rr = 0, which is replicated from
Ref. 15.

C. Method 2: Sampling algorithm to obtain inherent
structures (Fig. 2(c))

As in method 1, our energy function follows that of
Eq. (1), with the exception that white (solvent) sites are
not allowed (Fig. 2(c)).14 Therefore, there are three types
of interaction (free) energies: ϵbb, ϵbr, and ϵ rr. The chemical
potential term µC(i) is 0 and µb for red and blue nodes,
respectively. These chemical potentials indicate how easy it
is to switch to red and blue states based on the relative
concentration of reds vs blues in a notional or implicit
“solution” (the grand canonical reservoir of colored blocks).
Therefore, the fraction of blue nodes in implicit solution is

f s
b =

eµb

(1 + eµb) . (2)

Inherent structure sampling happens in the following
fashion. All sites within the lattice are randomly populated
with subunits (either red or blue). At each sampling step,
state changes are attempted by randomly selecting a site and
then attempting a switch in the subunit’s color. If the switch
is energetically favorable or neutral, then that state change
is kept. This process continues until no state change occurs.
While these rules in effect represent sampling at T = 0, they
are also equivalent to a sampling protocol where temperature
is finite (say T = 1) and where the interaction energies are
multiplied by ∞.

All of the inherent structure diagrams or ISDs discussed in
this paper (Fig. 2(c), Figs. 5(a) and 5(b), and Figs. 5(a)-5(c))
are calculated with µb ≡ 0, i.e., relative concentrations of
red versus blue subunits in the notional solution are equal
( f s

b ≡ 0.5). Changing the relative concentration (by tuning µb)
effectively shifts or translates the features (plateaux) within
the ISD with respect to ϵbb and ϵ rr without changing the
positions of the plateaux relative to each other (see Fig. 3B in
Ref. 14).

As calculated previously,14,15 each point on the inherent
structure diagram obtained in Fig. 2(b) represents the average
fraction of blues ( fb) of a number of inherent structures,
calculated using the method shown above, at that particular
(ϵbb,ϵbr) point.

A theoretical framework is explored below that attempts
to chart such ISDs.

III. THEORY: CHARTING THE INHERENT
STRUCTURE DIAGRAM

A. Possible ISD plateau boundaries
from simplex transitions

First, this report shows that borders between plateaux may
be surmised by understanding the behavior of color switches
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within simpler sub-structures of the lattice. Such units of
structure are described as “simplices,” which comprise a
central node and all of its nearest neighbors. While the term
“simplex” is traditionally considered to be extensions of a
triangle in a given dimension, this report utilizes the algebraic
topology definition of a simplex (abstract simplicial complex),
in which the word “simplex” means a finite (but still useful
and basic) set of vertices. For the purpose of this paper, a
simplex is a convenient word to be used repeatedly instead
of the longer yet appropriate term “central node with all its
neighboring nodes.”

While simplices can be described for any regular graph
(including random regular graphs), the derivation below will
be introduced using the square lattice/graph. For square lattices
in dimension d, each simplex will have 2d + 1 nodes and is
denoted graphically as a star graph ( ), with the different color
combinations (e.g., , , . . . ) describing the various degrees
of freedom for the simplex. In these simplices, the central node
is the only node on which a color-switch will be attempted.
For any specific set of peripheral nodes (say ), “state b” and
“state r” are defined as simplices whose central node is of color
“b” and “r,” respectively. So, for the peripheral configuration
“ ,” “state r” is “ ” and “state b” is “ .” There are 2d + 1
number of simplex pairs that describe energetically unique
environments, each corresponding to the unique number nb of
“b”s that surround a central node (nb ∈ {0,1 . . . ,2d}). Note
that, energetically, the exact configuration of neighbors do
not matter since their energies are identical; so, and are
equivalent simplices. Important to our treatment, each simplex
pair can be treated as a single-site color switch conceptually
occurring somewhere in the infinite assembly.

B. Establishing necessary criteria for ISD
plateau boundaries

Given a sampling algorithm, inherent structures are
“stuck” conformations, i.e., zero degrees of freedom are
available to any site in such structures (unless temperature
is added to the system). Therefore, any plateau boundary in
the ISD must lie at regions of (ϵbb, ϵbr)-space where at least one
simplex freely switches back and forth (e.g., ↔ ), as such
a boundary would indicate that adjacent regions in the energy
space cause locally irreversible switches for that simplex
( ← or → ), which is a precursor to a jammed
or “stuck” conformation. Not all such moves are likely to
cause jammed conformations, as peripheral sites may also
be allowed to evolve to “unjam” the simplex in question.
However, such equalities are necessary criteria for ISD
boundaries, whose closed forms will be derived below.

For any simplex pair, one can assess whether a given
energy regime would allow for free switching ( ↔ ),
or switching only in one direction ( ← or → , by
comparing the difference between the interaction energy of
the state b simplex versus the state r simplex. In particular, the
following relationship, if met, allows for free switching, and
if not met results in switching permitted only in one direction,

(3)

For any pair with nb blue neighbors, and ϵ rr ≡ 0, this
relationship becomes

Aϵbb + Bϵbr + µb = Cϵbb + Dϵbr, (4)

where µb is the chemical potential for a node with color “b,”
which dictates the value of the relative fraction of “b” in
solution or f sol

b (see Section II C); A and C are the number of
ϵbb bonds in simplex states r and b, respectively, and B and D
are the number of ϵbr bonds in states r and b, respectively. A
simplex pair with nb number of “b” neighbors yields

A = nb, B = k − nb, C = 0, D = nb. (5)

See, e.g., Fig. 4(a) for an example of such assignments. nb is a
boundary-specific value set by the number of peripheral “b”s
(nb) displayed by the specific simplex pair. The additional
parameter k is the degree of the regular graph (and so k = 2d
for any square lattice in dimension d). Applying Eqs. (5) to
Eq. (4) gives

ϵbr =
nb

(2nb − k) ϵbb +
µb

(2nb − k) . (6)

This is the equation for all possible plateau borders within the
antiferromagnetic regime of the ISD (defined by those regions
in Fig. 4(b) whose structures are not all-red and all-blue;
i.e., demarcated by simultaneous conditions ϵbr < ϵ rr ≡ 0 and
ϵbr < ϵbb). There can only be k + 1 number of such boundaries,
as nb can be only one of k + 1 values (nb = {0,1, . . . , k}).

FIG. 4. Obtaining a closed-form description of plateau boundaries in d = 2.
Plateau boundaries may be deciphered by comparing for each simplex pair
(state r and b) the number of b–b and b–r bonds available to each state (a).
Applying these numbers to the basic transition equation (Eq. (4)) results
in borders that depend only on the number of surrounding “b”s (nb), solu-
tion concentrations of each component (related to µb), and the connectivity
(k = 2d) of the lattice (Eq. (6)). Plotting Eq. (6) results in plateaux (b) that
are identical to those obtained from inherent structure sampling (Fig. 2(a)).
Correspondence in other lattices is also observed in Fig. 5.
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FIG. 5. Plateau boundaries obtained
from simulation [(a)-(c)] and Eq. (6)
[(d)-(f)] coincide within the antiferro-
magnetic regime. Simulations were per-
formed for square lattices of varying
dimension (d). For any (ϵbb, ϵbr)-pair,
the starting conditions were chosen to
be a random mixture of equal parts
blue and red and f sol

b = 0.5 (µb= 0);
the relevant plateaux (with 0 < fb < 1)
remain stable regardless of the starting
conditions.14 The antiferromagnetic re-
gions in an ISD [(a)-(c)] display inher-
ent structures that are neither all blue
nor all red.

Aside from system properties (k,µb), each boundary is defined
by the integer nb (Fig. 4(b)). Additionally, a possible plateau
is defined by adjacent nb’s, with the adjacent boundaries being
nb − 1 and nb for nb ≤ k (Fig. 4(b)). Attesting to the utility of
the “simplex method” above, the plateau boundaries obtained
from our sampling methodology are precisely marked by
boundaries indicated by Eq. (6). Compare, e.g., plateaux
obtained from simulation (Fig. 2(a)) and Eq. (6) in Fig. 4(b);
similar comparisons for other dimensions are shown in Fig. 5.

C. Local structures associated with each plateau

This section shows that the simplex formalism discussed
above may be used to predict the types of inherent structures
displayed by each plateau. Fig. 6 displays structural properties
and a structure for each of the plateaux in d = 2 (Fig. 4(b)).
For each column that describes a distinct plateau, panel

(a) describes the allowed (downhill) moves available to
our sampling algorithm (at T = 0). Panel (b) describes the
local environments displayed by the structure, as measured
by f ib and f ir (these are the respective probabilities that
blue and red nodes are surrounded by i number of blue
neighbors; i ∈ {0, . . . , k}). The complete collection of f ib
and f ir completely describes how the structure is locally
distributed. Finally, an example of the resulting polycrystalline
structure is shown in Fig. 6(c), and the relationships between
interaction energies within each plateau are shown in Table I.

D. Polycrystalline types dictated by nb

Plateaux within the antiferromagnetic regime are associ-
ated with not one structure but an ensemble of configurations
that display specific distributions of local environments
(Fig. 3). Interestingly, as suggested by the plateau-specific

FIG. 6. Aspects of local structure evident within plateaux (b) and (c) are direct outcomes of energetically downhill simplex switching rules (a). Simplex
switching involves swapping the color of the central node of a simplex. The key indicates possible simplex switches, where the simplex pair is defined by a
specific number of blues in the neighborhood (i). Panel (a) describes the allowed moves within simplices of particular neighborhood i, where the blue and light
red arrows, respectively, indicate a simplex switch towards state “b” and “r.” Given that only energetically downhill switches are allowed, these unidirectional
switching rules are hard constraints on the types of simplices that are allowed within a plateau, which is measured in (b) by f ib and f ir . ( f ix is the number of “x”
sites that are surrounded by i number of blue sites divided by the total number of “x” sites.) f ir = 0 if i < nb and f ib = 0 if i ≥ nb, where nb is the plateau number.
This, in turn, dictates the specific types of compositional polycrystalline materials that arise from each plateau (c), which are all marked by grains composed
of alternating red-blue coloring, but whose grain boundaries are plateau-specific (going from all-red for plateau 1 to all-blue plateau 4, and distinct mixtures in
between). Local environments for other dimensions and lattices are shown in Fig. 7.
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TABLE I. Allowed interaction energy relationships within each plateau for
d = 2 obtained from Eq. (6).

Plateau
Interaction energy constraints

# 1 2 3

1 ϵrr= 0 ϵbr < 0ϵbb − 1
2 ϵbb < ϵbr

2 ϵrr= 0 ϵbr < − 1
2 ϵbb 0ϵbr < ϵbb

3 ϵrr= 0 ϵbb < 0ϵbr ϵbr <
3
2 ϵbb

4 ϵrr= 0 3
2 ϵbb < ϵbr ϵbr < ϵbb

simplex switching rules in Fig. 6(a), crucial aspects of the
distribution of f ib and f ir depend primarily on the characteristic
nb that describes the plateau,

f ib = 0 if i ≥ nb, (7)

f ir = 0 if i < nb. (8)

These vanishing probabilities are critical rules for under-
standing the structural features observed in each plateau;
for example, f i≥1

b = 0 and f i<1
r = 0 for plateau 1 (nb = 1)

ensure the observed polycrystalline structure (Fig. 6, first
column),14,15 where red-blue binary crystalline domains are
separated by purely red boundaries. The simplex method
appears to therefore be useful to both apportion the ISD into
plateaux (Figs. 4 and 5) and account for the qualitative features
of the material emerging from such plateaux (Fig. 6). Given
that these predictions are based on local connectivity only, our
boundary predictions also hold for higher dimensions (Fig. 5).

It is important to note that all of our results are dependent
on simplices, which are local snapshots of the larger assembly.
While this treatment is useful to motivate the existence of ISD

plateaux and establish constraints on the local neighborhoods
within plateau-specific inherent structures, it appears as
though processes at the global network level dictate the exact
magic number ratios observed in each plateau. This is most
evident when comparing two networks of identical degree
or coordination (k): the nbo lattice and d = 2 square lattice
(rows two and three in Fig. 7), both of which have k = 4.
While our method correctly predicts the plateau boundaries
and constrains on local structure that result in the specific
class of compositional polycrystal, the magic-number ratios
are different in both networks (they are, respectively, ∼0.3̄ and
∼0.364 for the nbo and 2d square lattice).14,15 This arises from
the fact that specific distributions within the unconstrained
regions of the neighborhood vary between lattice types (rows
two and three in Fig. 7). This indicates that while the local
connectivity describes the type of (polycrystalline) structure
within each plateau, the actual ratio of reds:blues in solution
are the result of non-local events as well; the exact effect of
global connectivity on the magic number ratios is left for a
future report.

E. Allowing solution compositions to vary

The last term containing µb in Eq. (6) indicates that
changing the relative implicit solution concentration of
components from 1:1 (i.e., setting µb , 0) will result in
simply the skewing of the landscape such that the center of the
radiating landscape shifts by µb/(2nb − k) in the ϵbr-direction
and −µb/2nb in the ϵbb-direction. This skew in the center
of the radial ISD versus the center of the coordinate system
(ϵbb, ϵbr = 0,0) is also observed in simulations14 and indicates
that given a set of interaction energies, one may be able to

FIG. 7. As shown in Fig. 6(b), panels within each row describe the local environment of structures residing within each ISD plateau obtained from a particular
lattice. The lattices shown are square lattices of dimension d = {1,2, . . .,5} (k = 2d) and the nbo lattice (k = 4). These graphs display two overarching constraints
that are plateau-specific: f ib = 0 if i ≥ nb (see Eq. (7)) and f ir = 0 if i < nb (see Eq. (8)). These hard limits are due to the plateau number (nb) and can be visualized
within each graph (b) as a vertical barrier (red dashed line) that separates the blue bars (to the left) from the light red bars (to the right).
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predict not only the assembly’s expected plateau/inherent
structure, but also the solution conditions (range of µb)
within which an out-of-equilibrium assembly’s magic ratio
will remain the same.

IV. ENDING REMARKS

Simple local rules of an interaction network, along
with simple energetic considerations, have allowed for the
charting of regions (plateaux) of the two-component ISD,
within which identical outcomes occur. This work allows
for the characterization of the classes of inherent structures
that inhabit those plateaux and re-establishes that local
connectivity (degree) explains much in the inherent structure
world. However, global connectivity is finally needed to
establish exactly what magic number ratios are described
by the inherent structures within each plateau, which I leave
open as a future line of research. This work may eventually
be useful in the rational design of a range of compositional
polycrystalline materials formed far from equilibrium.
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