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Two modes of protein sequence evolution and their compositional dependencies
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Protein sequence evolution has resulted in a vast repertoire of molecular functionality crucial to life. Despite
the central importance of sequence evolution to biology, our fundamental understanding of how sequence
composition affects evolution is incomplete. This report describes the utilization of lattice model simulations
of directed evolution, which indicate that, on average, peptide and protein evolvability is strongly dependent
on initial sequence composition. The report also discusses two distinct regimes of sequence evolution by point
mutation: (a) the “classical” mode where sequences “crawl” over free energy barriers towards acquiring a target
fold, and (b) the “quantum” mode where sequences appear to “tunnel” through large energy barriers generally
insurmountable by means of a crawl. Finally, the simulations indicate that oily and charged peptides are the most
efficient substrates for evolution at the “classical” and “quantum” regimes, respectively, and that their respective
response to temperature is commensurate with analogies made to barrier crossing in classical and quantum
systems. On the whole, these results show that sequence composition can tune both the evolvability and the
optimal mode of evolution of peptides and proteins.
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I. INTRODUCTION

Important to both the history of life and the design of novel
proteins is the unresolved question of how random peptide
and arbitrary protein sequences are able to evolve into novel,
structurally stable proteins [1]. While the field of protein
sequence evolution is rich with understandings gleaned from
half a century of research, little attention has been directed
towards how sequence composition modulates evolvability. A
recent study indicated that sequence composition may play
an important role in the early beginnings of life [2], which
further predicates a thorough exploration of the dependence of
sequence evolvability on its composition.

This report explores how amino acid composition may
tune the ability of a peptide (or protein) to evolve into a
novel structure (and hence function). So far, it has been
exceedingly difficult to provide such relationships using
experiments and all-atom simulations, which is due to the
enormity of both sequence space and the universe of structures
available to any sequence. Because of these experimental and
computational shortcomings, this report capitalizes upon the
well-characterized cubic lattice model [3] rather than using
all-atom models. Such lattice models, while losing complex
molecular detail such as atom-resolution side-chain–side-
chain interactions and secondary structure formations, have
been shown previously to faithfully mimic protein behavior
[3–8] while allowing for a more efficient sampling of both
sequence and structure space. For example, variants of the
model have already been used to explore folding cooperativity
[9], criteria for designing and evolving stable folds [10], as well
as crucial relationships between thermodynamic properties of
the native state (e.g., “energy gap”) and fast and cooperative
folding kinetics [3,4], which is an important relationship for
protein design algorithms today [11,12]. Relevant to this
report, the cubic model was also used to show that, while
the possibility that a random sequence may fold into stable

*rvmannige@lbl.gov

structures is vanishing, some physiochemical factors may be
sufficient to induce the emergence of stable folds [8,13].

Given the near-structural degeneracy of a random peptide’s
ground state, the question of how a random sequence may
strengthen its lowest-energy (native) state is not of immediate
relevance. However, of importance to ab initio protein fold
invention [1] is the question of how a random peptide could
“evolve” into an arbitrarily selected novel fold, assuming the
fold’s imminent importance in a biological or prebiological
setting. The question asks how, given an arbitrarily selected
fold (assumed to be of prebiological import), does composition
modulate the transition to that fold from a random peptide
(or even another protein)? Such a question involves directed
evolution to a target fold, which is not a natural feature of
evolution; however, such studies and simulations will allow us
to use statistics in order to ask how evolutionarily accessible
a fold is overall and how the starting sequence’s composition
may modulate that accessibility and evolvability.

These questions were addressed by performing millions
of independent evolution simulations where target folds and
starting sequence compositions are tuned. The simulations,
described below, indicate that two types of protein folds exist—
evolutionarily accessible or “good” folds and inaccessible
or “bad” folds—each of which is dominantly accessible by
distinct evolutionary mechanisms that are dependent on the
fraction of oily (fh; see Methods) and charged (fc) residues
within the starting peptide, respectively. To begin the results
section, an example of a strong relationship evidenced between
an initial peptide’s oil content (fh) and its propensity to evolve
into an arbitrary “good” fold is discussed.

II. METHODS

A. Amino acid groupings

The amino acid groupings that will be referred to regularly
are defined here. The set of amino acids defining oily (h),
charged (c), and polar (p) amino acids are [FILV], [ERDK]
and [STNQ], respectively (single letter codes are used). While
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c is easy to define, as these are the only four residues that are
charged in normal environments, the four most oily residues
on the Kyte-Doolittle hydrophobicity scale [14] were chosen
to populate h, partly to match the number of residues in c and
partly because this metric was successfully used in another
study [2]. Finally, the fractions of oily (h), charged (c), and
polar (p) residues in any sequence are denoted as fh, fc, and
fp, respectively.

B. The model

To simulate peptide sequence-structure evolution, a previ-
ously well-characterized cubic lattice protein model was used,
which, while lacking the nuances available to proteins such as
atom-resolution interactions and secondary structure, is able to
reiterate protein behavior and evolution [3–8]. The importance
of this model lies in its relatively low computational load,
due to the substantial but manageable number (N ) of possible
folds allowed within the structural ensemble, which allows this
model to be used in millions of evolution simulations while
varying target folds and sequence compositions (discussed
below). This volume of studies is currently inaccessible by
experiment and all-atom simulations.

In this model, 27-amino-acid peptides may fold into one
of N collapsed cubic “folds,” depending on their amino acid
sequence. The sequence {σi} is sourced from a 20-residue
repertoire of naturally occurring amino acids, whose energy in
configuration {ri} takes the form

E({ri},{σi}) = 1

2

∑

i,k

B(σi,σk)δ(ri − rk). (1)

Here, B is a precompiled amino acid interaction potential
matrix [15] and B(σi,σk) is the interaction energy between
the types of the two amino acids σi and σk , assuming that
they are in contact (denoted by δ). In the discussions, a
collapsed structure {ri} is collectively referred to by its index j

in the precompiled ensemble of possible collapsed structures
(totaling N ). Also, as a shorthand notation, Ej is the contact
Hamiltonian of the sequence at hand in configuration j .

C. Simulating protein fold evolution

The evolution simulations utilized a well-characterized
27-residue cubic lattice model, whose amino acids are able to
mutate to any of the 20 natural varieties [3]. Starting sequences
are allowed to evolve via the Monte Carlo sampling of point
mutations, with the probability of accepting or keeping a
mutation equaling min(1, exp [−�Esep/kTmc]). Here, �Esep

represents the change (upon mutation) in the target energy
separation, i.e.,

Esep = Ej − 〈E〉, (2)

which is the sequence-dependent energy function that, when
minimized, minimizes the target fold’s energy Ej while
maximizing the kinetic accessibility of j important to pro-
teins (conversely, lower |Esep| indicates more shallow energy
landscapes). Also, k is a constant and Tmc is the temperature
of the simulation. Together, kTmc scales the capacity for
the mutating sequence to overcome energy barriers. As the
energies concerned (Esep) are physically sourced in kcal/mol,

k was set to be the Boltzmann constant (1.9872041 ×
10−3 kcal mol−1 K−1) and kTmc = 0.59 (i.e, Tmc ≈ 297 K).

The evolution of a sequence is defined as complete when the
Boltzmann probability Pj of folding into the target structure
j exceeded 0.8. The Boltzmann probability of finding the
sequence in fold j is

Pj = e−Ej /kT

∑N
i e−Ei/kT

, (3)

where k is the Boltzmann constant, T is the temperature of the
system, Ej is the energy of the sequence in a conformation
j , and N is the number of structures in the ensemble. In our
simulations, kT is set to 0.59 (i.e., T ≈ 297 K), and the number
of structures in the ensemble (N ) is kept at 10 000 (a fraction of
the total number of collapsed structures) to maintain tractable
computation speeds (N = 10 000 is a small but still substantial
fraction of the total number of the possible collapsed cubic
forms [16]).

While Pj > 0.8 is a relatively lenient criterion for stability,
it is a value that allows for computational tractability while
ensuring the dominance of fold j in the evolved sequence’s
structural ensemble. Additionally, when structure j describes
the sequence in its lowest energy (making j the ground or
“native” structure), then Pj is also referred to as PNat. For
reference, the free energy of obtaining structure j may be
obtained from the Boltzmann probability Pj :

�Gj = kT ln
[
P −1

j − 1
]
. (4)

Finally, the number of mutations or steps (TPj
) required to

evolve a starting sequence to fold into an arbitrarily chosen
fold j with high probability Pj was used as an inverse measure
of sequence evolvability. As discussed above, the target
Boltzmann probability is selected to be 0.8, and so our metric
for “time” to complete an evolution run is T0.8. While T0.8 is
expected to have strong dependence on its exact sequence,
of interest to this report is the average behavior of T0.8

(〈T0.8〉) with respect to the starting sequence’s composition.
Additionally, the average value of 〈T0.8〉 over the entire range
of sequence compositions (〈〈T0.8〉〉) is a fold-specific metric
(Fig. S6 [17]) and is useful in defining fold evolvability and
fold “goodness” (Fig. S1). Particularly, as is seen below, good
folds are defined as satisfying the criterion 〈〈T0.8〉〉 � 250.

For any simulation trajectory, the number of intermediates
(used in Fig. 3) is the total number of distinct ground states
(folds) accessed by the evolving sequence before acquiring the
target fold.

D. Composition as a measure of collapsedness

The average amino acid interaction energy B0 is a useful
metric for average “collapsedness” of a random sequence,
since a lower (negative) value for B0, due to its net favorable
internal energy, indicates a higher tendency for a sequence to
collapse on average [3].

For the superset of purely random sequences, given that
each amino acid (and hence each pair of amino acids) in
the interaction matrix will be equally encountered purely by
chance, B0 will be equal to the averaging of the elements
of the interaction energy matrix B, i.e., B0 = 〈B(i,j )〉. By
constraining the fraction of X residues to fx , one can calculate
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FIG. 1. (Color online) Oily peptides are highly evolvable. 27-
residue sequences are evolved in steps of mutation and selection to
fold into an arbitrary cubic “target” fold j (a) with high Boltzmann
probability of 0.8 (see Methods). One “set” of simulations consists of
peptides of varying oil content (fh = {0/27,1/27, . . . ,27/27}) that
are each evolved to an arbitrarily chosen target fold j . The results,
shown explicitly for one set (b) and summarized for 100 distinct
sets (c), indicate a dominantly negative correlation (ascertained by
negative Spearman coefficient rh) between starting fh and average
time (number of steps) taken to complete the evolution (〈T0.8〉).
The lines describing “evolvable” and “oily” in panel b are placed
to visually indicate that relatively more oily peptides are more
evolvable. These simulations present a clear relationship between
a sequence’s starting oil content and its average evolvability. Each
value (dark, filled circle) in panel (b) is obtained from 100 starting
sequences evolved 50 times independently (simulations starting with
pre-evolved proteins are averaged in the large, pink (light gray) shaded
circle; see text). The residues (in single-letter code) considered to be
oily in this study are [FILV]. However, using expanded definitions for
oily (e.g., adding M, W, and C to [FILV]) does not change the trend
found in panel (b) (Fig. S4).

the effective average amino acid interaction energy, B0(fx),
which must be a summation of probability-weighted averages
of sections of the potential energy matrix B; i.e.,

B0(fx) = f 2
x × 〈B(i,j )〉i,j∈X

+ 2fx(1 − fx) × 〈B(i,j )〉i∈X,j∈X′

+ (1 − fx)2 × 〈B(i,j )〉i,j∈X′ . (5)

This relationship follows given that fx and (1 − fx) are the
probabilities of randomly picking amino acids from set X and
its complement X′.

III. RESULTS

A. Evolvability is composition dependent

The initial experiments consisted of evolving 27-residue
lattice peptides of random sequence (sourced from a 20-residue
alphabet) to fold well into a particular maximally collapsed
(cubic) form. For every possible fractional oil content (fh),
evolution simulations were performed on 100 distinct random
sequences (each repeated 50 times), from which the average
“time” taken to complete—〈T0.8〉—was recorded (see Meth-
ods). The relationship [shown in the black-filled circles in
Fig. 1(b)] between the starting oil content of a random peptide

and its 〈T0.8〉 is very strong (Spearman correlation coefficient
rh ≈ −0.99), which indicates a strong positive dependence
of a starting peptide’s evolvability (∝ 〈T0.8〉−1) and its oil
content fh (also, the slope of the relationship steepens
when employing more “realistic” structural ensembles in the
simulation; see Fig. S2). Evolvability’s strong dependence
on oil content is dominantly reiterated in 100 independent
data sets, with 81% and 63% of the trends having rh � 0
and rh � −0.9, respectively, indicating a near-universal and
favorable dependence of evolvability on oil content.

Surprisingly, even the evolvability of pre-evolved lattice
proteins that attain other folds with Pi �=j � 0.99 [filled circle,
red online, in Fig. 1(b)] appears to adhere to the trend evident
in random peptides (see Fig. S3 for more independent exam-
ples). This universal adherence of evolvability to composition
indicates a scenario where well-folding proteins may often be
lower in fold evolvability than oily random peptides, which, as
a trend, may prove to be useful in understanding the origination
of the protein fold repertoire [1,2]. Current work on this matter
is under way.

Composition of polar and charged residues also appears to
affect evolvability to varying extents. In a manner identical
to Figs. 1(b) and 1(c), for each randomly chosen target
fold, sets of evolution experiments were performed with
varying starting oil [FILV], charge [ERDK], and polar [STNQ]
residue contents, which resulted in three Spearman correlation
coefficients rh, rc, and rp per fold, each relating the dependence
of evolution time 〈T0.8〉 and starting fractional content of oils
(fh), charges (fc), and polar residues (fp), respectively.

Figure 2(a) describes the distribution of r’s, which indicates
that highly polar content actually undermines fold evolution
(given that all rp’s are greater than zero). While such behavior
indicates a universal evolutionary “drag” for polar peptides
(given the universally slow relative speed of evolution), such a
term might be misleading, since in fact polar peptides sample
the largest and the most diverse number of intermediates during
their evolution [high fp peptides sample 55.4% ± 0.5 standard
deviation (s.d.) and 60.6% ±1.4 s.d. more intermediates
compared to high-fc and high-fh peptides, respectively; Table
S1); it appears that while polar peptides are able to sample a
large portion of the free energy landscape, they do not easily
“fall” into the desired structural minimum, potentially due to
the lack of enough self-energy in any particular configuration.
This behavior may be compared analogously to a “low-mass
golf ball” in a golf course, which potentially gets near the target
hole (topology), but never easily falls in due to lack of enough
“weight” (self-energy). The next focus will be on substrates
that hasten the evolution to a target fold.

B. Distinct evolutionary regimes

At first glance, both high oil content and high charge
content of a starting sequence appear to be important to the
evolution of all novel folds, with both rh and rc displaying
dominantly negative values [Fig. 2(a)]. However, charge
content is less significant in “practical” evolvability, as its
importance lies mostly in hastening the evolution of folds
that are evolutionarily difficult to approach in the first place
[Fig. 2(d)], while oily peptides hasten the evolution of more
approachable and evolvable folds [Fig. 2(c)] marked by
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FIG. 2. (Color online) Large-scale studies of the effect of ini-
tial composition vs evolvability. For each amino acid class x ∈
{h[oily],c[charged],p[polar]}, correlation coefficients were obtained
[rx’s; similar to the rh in Fig. 1(b)] for a hundred target folds. The
distribution of rx’s (a) indicates that evolution is hastened with the
increase in oils and charges (i.e., for most folds, rh and rc tend
towards −1), while polar groups are actually counterproductive to the
evolution process (with rp � 0; also see Fig. S5). Remarkably, oils
and charges modulate evolvability at different fold regimes, given
the anticorrelation between fold-specific rh’s and rc’s (b; Spearman
r = −0.82, p-val = 1.42 × 10−25), with oily peptides being most
useful in “good” designs that are evolutionary most approachable
(〈〈T0.8〉〉 � 250; (c), while evolution of “difficult folds” appears to
depend mostly on high charge content (d).

〈〈T0.8〉〉 � 250 (Fig. S1). Indeed, the capacities to evolve
from oily versus charged peptides into any particular target
fold are anticorrelated [Fig. 2(b); Spearman r = −0.82, p-val
= 1.4 × 10−25]. These results indicate two distinct regimes of
evolvability, each affected mostly by either oils or charges,
respectively. For more on the criterion for distinguishing good
from bad folds, please refer to Fig. S1.

C. Exploring the distinct evolutionary mechanisms

The distinct regimes of evolution espoused by oily and
charged peptides [Figs. 2(b)–2(d)] indicate distinct molecular
mechanisms of evolution. By studying the effect of peptide
evolution in the 10 best and worst folds, an attempt is made
to dissect these molecular mechanisms. Figure 3 presents the
evolutionary properties of the starting sequences (of maximum
fx∈{h,c,p}) for 10 of the best and worst target folds indicated
by the lowest and highest 〈〈T0.8〉〉’s, respectively. As expected
from Fig. 2, oily starting peptides are the best substrates for
good folds, while charged peptides are the best substrates for
bad ones [Fig. 3(a)]. Interestingly, the number of intermediate
folds required by oily peptides to reach the target fold
[Fig. 3(b)] is consistently lower than average for both good and
bad target topologies (raw data in Table S1), which indicates
that, in all scenarios, oily peptides sample the most expeditious
paths—shortest paths with intermediates that are structurally

oily charged polar residuesKey: Dependence on
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FIG. 3. (Color online) Oily peptides access the most direct paths
and intermediates to the target fold. Listed in the abscissa of each
panel are the 10 best and worst folds, defined by the average time
〈〈T0.8〉〉 taken for a random peptide (i.e., 〈T0.8〉’s averaged over all
fx∈{h,c,p}’s) to evolve into a target fold. The ordinate shows three
evolutionary propensities per fold for peptides of maximal oils
(black), charges (red online), and polar residues (blue online) when
compared to unbiased random peptides (�; positive and negative
values indicate values that are higher and lower than random results,
respectively). As expected from Fig. 2, oils are most important for
evolution of good folds (a), while charges are most important for
the evolution of bad ones. Surprisingly, the number of structural
intermediates encountered by oily peptides while approaching a target
fold (b) indicates that while oily peptides provide the most “direct
route” (lowest intermediates) to the target, the transition barriers to
reach the target are too high for bad folds.

most similar to each other (Fig. S7)—in protein structural
space (characterized by the “protein domain universe graph”
or PDUG [18]), while the relatively much higher number of
intermediate topologies sampled by highly charged peptides
indicate a random-jump move in intermediate structure space
until the target topology is obtained as its native state.

D. “Crawling” versus “tunneling” (Fig. 4)

This section extends the previous discussions relating the
dynamics of evolutionary barrier crossing to the quantum
and classical mechanics of energy barrier crossing [19–21].
Two pictures emerge when considering the evolution of a
sequence from structure A to structure B. First, in the classical
picture, the sequence overcomes an energy barrier (associated
with breaking interactions that stabilize A) by hopping or
crawling through often dynamic [22] intermediates (AB‡)
until B is exclusively obtained. Alternatively, in the “quantum
mechanical” picture, the sequence could jump or “tunnel”
more drastically and blindly over large swaths of structural
space, thereby eventually finding structure B. While the
classical method is the canonical one, tunneling has also been
discussed in reference to genetic recombination [20] and is
related to surmounting a large sequence-sampling-dependent
entropic barrier to a final extremum fitness and functionality
[23]. This section describes how evolution by oily and charged
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FIG. 4. An interpretation of Figs. 2(c) and 2(d). Panels (a)–(c)
describe three fold-specific evolutionary transition barriers associated
with three evolvabilities or 〈〈T0.8〉〉’s (low, critical, high). The
thick, horizontal arrows indicate the evolutionary “transition rate”
(black-filled) and “transmission rate” (white-filled) that indicate
distinct (oil-dependent) crawling and (charge-dependent) tunneling
mechanisms, respectively. Given the probabilistic nature of tunneling,
the increase in the average required number of steps 〈〈T0.8〉〉 will result
in a monotonic and steady increase in the evolutionary contribution
of substrates employing such a mechanism [(d), dashed line; ordinate
axis is flipped to resemble that in Fig. 2(c)]. Conversely, the
dependence on substrates that utilize the “crawl” mechanism will
diminish swiftly and sigmoidally as the critical transition barrier
(indicated by a critical 〈〈T0.8〉〉∗) is crossed [(d), solid line]. The
two scenarios appear to be applicable to the evolution of charged
[Fig. 2(c)] and oily peptides [Fig. 2(d)], respectively.

sequences may be related to classical “crawls” and quantum
mechanical “tunnels” through energy barriers, respectively.

The comparison of the two modes of evolution (from two
classes of starting peptides) to crawling over and tunneling
through a cumulative evolutionary barrier is potentially useful
in explaining the following behaviors at the two regimes.
For oily starting peptides, a classical crawl over evolutionary
barriers is indicated by (i) a sigmoidal descent in the utility of
oily peptides beyond a particular threshold evolutionary barrier
“height” [i.e., at a critical threshold 〈〈T0.8〉〉∗, rh abruptly
departs the negative regime; see Figs. 2(c) and 4(d), solid line],
and (ii) the increase of the critical threshold value 〈〈T0.8〉〉∗
with increasing evolutionary temperatures (simulations run at
kTmc = 0.59 and 0.79 are presented and compared in Figs. S8
and S9). Both these properties are expected for mechanisms
dependent upon the classical crawling (or “hopping”) over evo-
lutionary barriers. Conversely, for charged peptides, tunneling
through evolutionary barriers is indicated by (i) an increase in
the utility of charged peptides with increasing energy barriers
[rc → −1 as 〈〈T0.8〉〉 → ∞; Figs. 2(c) and 4(d), dashed line],
which occurs in a more gradual (nonsigmoidal) fashion, and
(ii) the decrease in the utility of this putative tunneling
method with the increase of evolutionary temperature (see
Figs. S8 and S9 for simulations at two kTmc’s). In these
ways, evolution from oily and charged peptides appears to

(b)(a)

FIG. 5. (Color online) Charged peptides are optimal at evolution-
ary “tunneling.” 100 000 random sequences of maximal fh [black; see
key in panel (b)], fc (red online), and fp (blue online) were produced,
whose histogram distributions of Boltzmann probabilities of attaining
the ground state (PNat) and a randomly chosen state from the ensemble
(PRandom) are shown in panels (a) and (b), respectively. It is evident that
although the chances are low (note the log-log scale), random charged
peptides display greater stabilities for both ground state (native) folds
and random folds, indicating a rugged folding landscape for charged
peptides with the greatest potential for describing thermodynamically
stable non-native structures.

suitably reflect the behavior of evolution via the surmounting
of an evolutionary barrier by (classical) crawls and (quantum
mechanical) tunnels, respectively.

E. Charged peptides’ tunneling potential

The utility of charged peptides in tunneling is potentially
due to their pronounced ability to encounter relatively high
Boltzmann probabilities of assuming both their ground states
[Pj=Native or PNat; Fig. 5(a)] and other random folds [PRandom;
Fig. 5(b)]. Given that such probabilities are very low but
nonvanishing in value, their effect is only expected to be visible
or prominent when a relatively high number of evolutionary
steps are required and taken (〈〈T0.8〉〉 > 250).

F. Oily peptides’ crawling potential

This section discusses the properties of oily peptides that
may enable them to efficiently “crawl” over evolutionary
barriers.

1. Structural plasticity

The ability to select the most expedient path (as close to
the allowed “shortest path”) among all possible evolutionary
routes requires that the most expedient first intermediate must
be “accessible” to the sequence. This is similar to the concept
of a dynamic intermediate discussed in context of protein
function evolution [22,24,25]. Figure 6(a), which is an average
energy diagram of the 100 lowest-energy structures in the
ensemble, shows that high fh peptides do, as expected, have
numerous transient structures thermodynamically accessible at
reasonable temperatures; i.e., the sequence is structurally plas-
tic. A related metric, PNat—which in low values indicates the
structural degeneracy (“plasticity”) of a sequence—indicates
that high-fh peptides (along with high-fp peptides) have a
number of folds that are energetically close to the ground-state
value [Fig. 6(b)]. This indicates that oily peptides have a large
number of structural intermediates to choose from during their
evolutionary journeys.
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FIG. 6. (Color online) Oily peptides are structurally degenerate
[panels (a) and (b)], have high mutational allowance (c), and are
dominantly collapsed (d). Panel (a) represents the 100 lowest-energy
levels (skewed so E0 = 0) averaged for 100 random sequences for
fh = 0 . . . 1. This result is reiterated when studying the average
Boltzmann probability of occupying the “native” state PNat [panel
(b); lower PNat’s indicate higher structural degeneracy]. Panel (c)
shows that oily peptides uniquely have high mutational allowance,
which is inversely related to �Esep [panel (c); Eq. (2)]. Finally, panel
(d) shows that only oily peptides dominantly collapse in proteinlike
environments [negative average self-energy, B0—obtained from
Eq. (5), solid lines, and enumeration of 1000 peptides per fx∈{h,c,p},
solid circles—indicates average collapsedness; changing the source
of the pairwise potential matrix B does not change this result; Fig.
S10].

2. Mutational allowance

Second, to efficiently navigate evolutionary barriers, a
sequence must have the capacity to be regularly mutated with
nearly neutral or advantageous outcomes, a quality that may
be called high “mutational allowance.” To assay a sequence’s
mutational allowance, an inversely related metric—the change,
upon mutation, in the energy separation of the sequence
[�Esep; Eq. (2)]—was utilized, which indicates that oily
peptides are the only class of peptides that display high
mutational allowance [Fig. 6(c)].

3. Collapsibility

Finally, peptides that are dominantly collapsed would have
a higher chance of transiently describing folds within their
accessible structural ensemble. It has already been shown
[3] that the average interaction energy B0, obtainable by
integrating the elements of the amino acid interaction matrix B,
may be used as an indication of the average polymer’s tendency
to collapse (with lower or negative values of B0 indicating
greater propensity to collapse). Equation (5) describes B0 as
a function of the fraction of X residues (fx) in the peptide,
which shows how collapsibility may be tuned, on average,
by varying the fraction of oily (fh), charged (fc), and polar
(fp) residues. Both theory [Fig. 6(d); solid lines] and sequence

enumeration (circles) indicate that oily random peptides are
the only class of peptides that are expected to be dominantly
collapsed (Fig. S10 shows that this result is invariant of the
choice of pairwise residue potentials [15,26]); while some
charged sequences may collapse, most are not expected to do
so in protein environments.

Oily peptides are the only class studied that possess all three
properties important in efficient barrier crawling—structural
plasticity, mutational amenability, and collapsibility—which
makes them effective in the “accessible” fold regime. Charged
peptides, lacking these abilities, depend on their high 〈PRandom〉
[or “tunneling potential”; Fig. 5(b)] to eventually tunnel
into the vicinity of the target free energy minimum, upon
which downhill adaptation would proceed; the requirement
of high sampling for tunneling ensures that this method is
only efficient in the bad fold regime. Finally, polar sequences,
on account of displaying both the inability to crawl and low
〈PRandom〉, are left with the distinction of being the worst
substrate in both good and bad fold regimes.

G. Is fold invention by tunneling really possible?

It is important to note that the increased evolutionary
“tunneling potential” observed here for charged peptides is
possibly exaggerated, particularly due to the following three
points: (i) the frustrated nature of a collapsed charged polymer,
(ii) the relatively low probability that a charged polymer will
collapse in the first place [Fig. 6(d)], and (iii) the limited
size of the available structural ensemble (N = 10 000). The
true practicality of utilizing charges for “tunneling into”
evolutionarily inaccessible folds remains to be realized. Oily
peptides, which do not depend on a peptide’s vanishing
chances of naı̈vely obtaining a low Boltzmann probability of
folding, may not be affected by these caveats.

H. Alternate universes affect fold accessibility

Although deciphering what makes a “good” fold (a fold
with low 〈〈T0.8〉〉) is not the focus of this report, it is interesting
to note that while properties inherent to a protein fold and
topology are important in determining its designability and
evolvability [27–32], the relationship of a particular fold in
context of the universe of possible folds (indicated by its
position in the PDUG [18]) is also expected to be important
(as alluded to previously [33]). This was ascertained by
repopulating a new and randomized 9900-structure ensemble
(from the superset of 103 346 possible collapsed forms [16];
see Methods) with the 100 target folds studied in Fig. 2 and
reperforming all evolution experiments. Interestingly, while
the global trends in Fig. 2 are reiterated [Figs. S11(a)–
S11(c)], the evolvability of individual folds from the two
protein universes do not correspond well [Spearman r between
corresponding rx’s ≈ 0.4; Figs. S11(d) and S12; Table S2].
This indicates that while the distribution of good and bad
folds are the same in both protein fold universes (ensem-
bles), the “social standing” or goodness of each individual
fold is contingent upon its position in each fold universe
(PDUG).
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I. Other effects and modes of evolution

It should be noted that the studies discussed here are
on isolated peptides (at infinite dilution), and the addition
of other effects such as molar concentration dependence
(crowding) and change in salt conditions were not taken
into consideration. For example, higher-order relationships,
such as the propensity of oily peptides to aggregate, should
be considered. While aggregation is potentially detrimental
to biological systems [34], results from folding studies in
confined or hydrophobic environments are ambiguous, with
detrimental [35,36], stabilizing [37–40], and topology-specific
[41] examples. Extensive work to overlay such aspects onto
single-molecule studies remains to be performed.

Also, while oily peptides are more evolvable on average,
“successful” sequences must possess some polar and charged
residues that would partake in (potentially enzymatic) activity
and allow for their recruitment into a biological system. The
“sweet spot” of oil content that allows for optimal recruitment
and evolvability is unknown.

This report focused primarily on point mutations as a mode
of evolution, which is partially due to the historical focus on
this mode of evolution and partially due to the immutability
of the lattice model protein length. However, numerous other
modes of sequence evolution exist (such as recombination
[42–45]), which may modify the effective extent of sequence
sampling during protein and peptide evolution. The effects of
such moves on the regimes of evolution studied here are left
to future studies.

J. Further discussions

In this report, using composition-comprehensive lattice
model simulations, meaningful relationships between a pep-
tide’s average evolvability (into an arbitrary fold) and its amino

acid composition (with respect to oils, charges, and polar
groups) are established. Particularly, random oily peptides—
those peptides with high fractional [FILV] content or fh—
were established as the most effective at evolving into most
random target folds, and charged peptides (peptides with high
fractional [ERDK] content or fc) were found to be most
effective at evolving into random target folds that are more
evolutionary inaccessible (by means of a distinct “tunneling
mechanism”). The mechanisms for their respective superior
evolvabilities were shown to be distinct (Figs. 2 and 3), which
shows how distinct regimes of protein structure and function
may be approached using distinct mechanisms and substrates.

Finally, the results in this paper were obtained from more
than 80 million independent evolutionary simulations, which
reiterate the utility of lattice models in such exploratory
endeavors, as experiments or all-atom simulations are as yet
incapable of approaching such volumes. However, with the
knowledge of such comprehensive studies, further experi-
mental and atomistic investigations into the utility of amino
acid composition as an accelerant for evolution would be
useful from (i) the practical perspective of how one would
better design a novel protein and (ii) the more philosophical
perspective of how the first complete protein repertoire may
have originated from random peptides.

ACKNOWLEDGMENTS

I thank Alana Canfield, Ron Hills, and the two reviewers
for providing input to the manuscript. The lattice simulations
were performed on the Odyssey computing cluster hosted by
Harvard University’s Faculty of Arts and Sciences, and access
was provided by Eugene Shakhnovich. This work was funded
in part by the Mannige family and the NIH grant GM068670
to Professor Eugene Shakhnovich (www.nih.gov).

[1] C. Chothia, J. Gough, C. Vogel, and S. A. Teichmann, Science
300, 1701 (2003).

[2] R. V. Mannige, C. L. Brooks, and E. I. Shakhnovich, PLoS
Comput. Biol. 8, e1002839 (2012).

[3] E. Shakhnovich, Chem. Rev. 106, 1559 (2006).
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