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Abstract

Background: For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various
sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive,
even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient
nano-assemblies.

Principal Findings: This report uncovers an unprecedented and species-independent evolutionary pressure on virus
capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest ‘‘hexamer complexity’’,
Ch) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful
periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric
explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered
to be unrelatable properties of the individual virus.

Significance: Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table)
provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to
each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-
derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.
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Introduction

Viruses are pervasive pathogens that infect organisms belonging

to all domains of life [1]. A large number of these viruses (and their

genomes) are enclosed and protected by spherical capsids–

symmetric coats or shells composed primarily of multiple copies

of protein subunits [2,3]. Aside from serving as a protective layer,

capsids are involved with various other aspects of their respective

virus life cycles including timely viral genome encapsulation (self

assembly and genome packaging), cell-to-cell virus transport, entry

into host-cell (e.g., via cell receptor binding), genome release into

host cell, etc. [3] Despite their central importance to the life cycle,

the various evolutionary pressures acting on spherical capsids are

not well known. In this report, we use theory to shed light on what

seems to be an elusive but systematic and strong selection pressure

on the various capsid sizes potentially available in nature.

Half a century of empirical data has uncovered a large array of

capsid sizes that range from tens to many thousands in subunit

composition [4]. Still, some sizes are rarer than others (those

emboldened in Table S1 in File S1), an observation that puzzled

structural virologists as early as 1961 [5,6]. The cause for this

discrepancy remains unexplained. Why are some capsid sizes not

seen even today? Are specific spherical viruses disadvantaged from

an evolutionary perspective? Or have we just not looked enough or

in the right places? In this report, we present a conceptual

framework useful in providing answers to these questions, while

arriving at interesting observations about capsid classes, distribu-

tions, morphologies and mechanical properties. We first touch on

useful concepts that lead to a capsid classification that is finally

useful in developing the conclusions and schematic of this report.

Spherical capsids of all observed sizes may be obtained from a

grouping of twelve pentamers (symmetric clusters of five subunits)

separated by a variable number of hexamers (clusters of six

subunits) [5,6] represented in Fig. 1A (as a diversion, more strictly

speaking, the notion of the hexamer and pentamer must be

replaced with hexavalent subunit clusters and pentavalent subunit

clusters, respectively [6]. This is the case for the T~7d
papillomaviruses [7] where all capsomers are made up of five

subunits [but they are in both hexavalent and pentavalent

configuration], and larger viruses whose ‘‘hexamers’’ are actually

trimers of ‘‘fused’’ or covalently bonded dimers [8]).

Capsid size may be characterized by two integers, h and k (first

discussed by Goldberg [9]), which describe the number of

hexamers (hzk{1) one would have to ‘‘walk over’’ to get from

one pentamer to an adjacent pentamer within a completed capsid

(the walk is shown as arrows in Fig. 1A) [6]. As a rule, a longer
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‘‘walk’’ indicates the presence of more hexamers in the structure,

which means a larger capsid. A useful metric for capsid size–the

triangulation number, T (where T~h2zhkzk2)–was also intro-

duced [6]; this number is useful because, in most cases, a capsid of

triangulation number T is comprised of 60T subunits, or 12
pentamers and 10(T{1) hexamers, i.e., T is a quantitative metric

for capsid size. We now show, using ‘‘endo angles’’, that h and k

(and not T ) are sufficient in providing a useful capsid classification

schematic.

Results and Discussion

First, we will use the concept of the endo angle constraint to draw

connections between a capsid classification scheme (developed

below) and hexamer shapes present within a capsid. These

concepts will then allow us to arrive at a metric for capsid

complexity (hexamer complexity), which is useful in explaining

and predicting various structural and evolutionary properties of

the capsid.

Endo Angles Classify Capsids
The tilable nature of virus capsids [10] has uncovered a novel

constraint on hexamers called endo angle propagation (it is a constraint

imposed by pentamers onto hexamers; see Fig. 1B) that was crucial

in predicting the existence of various distinct hexamer shapes [11];

here, hexamer shape is defined by the hexamer pucker or subunit-

subunit planar angles within the hexamer (The number of

hexamer shapes available are enumerated in Fig. S2 in File S1).

In Section A of File S1, we show that there are three distinct

distributions of endo angle patterns within a capsid (Fig. S1 in File

S1), which ensures the emergence of three general morphological

classes (Fig. 2 and Table S1 in File S1) differentiated by their h-k
relationship: class 1 (described by the relationship hwk~0), class

Figure 1. Capsids are scalable. (A) Spherical capsids of various sizes
are composed of 12 pentamers (represented as darkened pentagons)
and a variable number of hexamers. (B) Quasi-equivalence [6] posits
that one may produce a pentamer from a hexamer by removing one
subunit and its environment (the shaded triangular region) and joining
the unpaired interfaces. This operation imposes pentameric dihedral
angle values (‘‘endo angles’’) onto its neighboring hexameric angles
[11], which, if unchallenged, propagate through the hexamers (depicted
by arrows) in what we call endo angle propagation.
doi:10.1371/journal.pone.0009423.g001

Figure 2. The three virus capsid classes. All canonical capsids (made up of trapezoidal subunits) may be built from a single type of pentamer and
a repertoire of distinct hexamer shapes (colored distinctly only once in each capsid; also described in Fig. S2 in File S1). The hexamer shape is
described by the number of endo angles it displays. Endo angles are depicted as bold lines within a ‘‘face’’ in its isolated (right) and capsid
environment (left) for the first three capsid sizes in each class (excepting T~1).
doi:10.1371/journal.pone.0009423.g002

Capsid Periodic Table
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2 (hwkw0), and class 3 (h~k). We will henceforth assume that

h§k for simplicity’s sake, since, for our discussions, the difference

between chiral l and d class 2 capsids is inconsequential.

As as brief but relevant detour, it is interesting that the

classification system presented here was previously qualitatively

recognized in the early 1960’s to explain absentees in the capsid

size diversity or T-range (Fig. 10 in Ref. [5] and Fig. 8 in Ref. [6];

although both accounts did not directly link h and k to class type).

Specifically, class 2 capsids (in our schematic) had not yet been

observed, and both reports postulated that capsids from this class

must be absent for specific (but distinct) physical reasonings [5,6].

Since then, capsids from all three classes have amply been seen

(abundances are reported in Table S1 in File S1), i.e., the

classification system can not be used to make direct predictions

about capsid existence. Consequently, this topic, which we are

readdressing now, appears to have been latent since 1962.

Introducing Hexamer Complexity (Ch)
The utility of the class system is not entirely lost, however;

specific endo angle patterns within the capsid ensures the existence

of distinct hexamer shapes (each shape is colored distinctly in

Fig. 2). Here, we introduce the hexamer complexity (Ch) as the

number of distinct hexamer shapes present in a capsid (a higher

number of distinct hexamer shapes per capsid reflects a higher

Ch). One may obtain Ch by counting the number of distinctly

colored (shaped) hexamers in Fig. 2 (Note that in our schematic,

hexamers in distinct environments are allowed to possess the same

shape). We reason that capsids with higher Ch are evolutionarily

disfavored.

Using Hexamer Complexity as a Metric for Understanding
Capsid Selection Pressures

High Ch capsids require more auxiliary control during
formation. Evidence indicates that capsid formation is

nucleated [12], often starting with a single capsomer species

(e.g., pentamers [13]; for the purposes of this paper, a capsomer is

a generally symmetric cluster of either five or six subunits), which

then proceeds to completion by the addition of small subunit

clusters (or single subunits). In T~1 capsids, where subunits are in

identical/equivalent environments [6], nucleated assembly will be

possible with no additional machinery (except for the predefined

angle of incidence for each subunit-subunit interaction site).

However, the formation of two or more capsomers from a single

interaction site will require the employment of additional

machinery to ensure high yields of the native state. For example,

quasi-equivalent switches [14,15] are required for the proper

assembly of capsids containing two distinct capsomers–a pentamer

and one type of hexamer (i.e. Ch~1). The addition of a second

hexamer shape (Ch~2) necessitates the requirement of a second

mechanism such as auxiliary proteins [16] for proper assembly

(discussed earlier in theory [11] and evidenced from the

observation that all recorded Ch
w1 or Tw7 capsids are known

to require auxiliary proteins for assembly [14]).

Capsid Ch! 1/capsid abundance. For spherical virus

capsids requiring more distinct hexamer shapes (larger Ch),

additional mechanisms to stabilize those new shapes at exactly

the right positions within the forming capsid are likely to be also

needed (lest off-pathway and fatal configurations would

dominantly form), the interplay of which, we propose, would be

theoretically possible to choreograph but unduly complex.

Accordingly, we predict that canonical capsids with larger Ch

will be encountered with a lower frequency in nature (it is beyond

any doubt that complexity is often not the sole criterion for natural

selection. In fact, if that was the case then humans would never be

given the chance to come into existence. But alongside natural

selection arises the notion of the niche, that states that, among

organisms that live within a niche and that compete for the same

natural resources, the most efficient design will likely prevail. This

comes into play when we consider spherical viruses that are

dissimilar in Ch but operate under identical host and reproductive

constraints. In those situations, the capsid with a simpler and more

efficient design, i.e., those with low Ch, will be more efficient than

the higher Ch capsid in assembling, and therefore propagating).

Support for this relationship (that high Ch will be encountered

with lower frequency in nature) is presented in Fig. 3A (and

discussed further in Fig. S3 in File S1), where there is an inverse

correlation between capsid Ch (calculated using Eqn. 1) and

observed capsid abundance (for Ch
w0 capsids, listed in Section L

in File S1, were pooled from EM and X-ray structure repositories

[4,17]. We did not distinguish between capsids containing external

lipid membranes and those that do not, since, often, such lipids are

post assembly features [18]). However, this is not the case for

unbiased capsid distributions (red line) where we assume no

evolutionary favoritism (i.e., if we assume that each capsid size or

T is equally probable to exist for the size range observed; T~1
through 219). Also apparent in this data is the observation that

Ch
w2 capsids are under-represented by a factor of *12

(*63% : 5% for unbiased vs. observed capsid abundances) when

compared to the calculated distributions for the observed size

range (if we calculate expected distributions for a more

conservative range of T~1 through 31, the unbiased value is

still *6 times higher than our observed 5% at *29%). This

suggests that a large evolutionary pressure in aversion to high

hexamer complexity may be at play in nature.

Capsid Ch is related to class (h,k) not size (T). Although

not directly relatable to capsid size (T ) and class (Fig. 3B), Ch is

easily obtained from the Goldberg parameters h and k (Eqn. 1)

from which we can show that Ch
w2 when both hw1 and kw1

(Table S2 in File S1). Ch rules are concisely reiterated in periodic

form in Fig. 3C such that, through each period (row), hexamer

complexity (Ch), class number, and triangulation number (T )

increase from left to right, allowing us to predict that capsids

belonging to the right side of this table (h,kw1) are evolutionarily

disfavored (note that there is no one-to-one mapping of T on

fh,kg; e.g., T~49 may be constructed from fh,kg pairs f7,0g and

f5,3g assigned to classes 1 and 2 respectively, i.e., some T
numbers will be repeated in the periodic table). Since capsid class

describes distinct geometries, we expect that this table will also be

useful in describing physical properties such as capsid rigidity.

Our complexity rules, although arising from geometric analysis

of canonical capsid models [11] (further discussed in Sections A–D

in File S1), appear to be applicable to almost all observed capsids,

indicating that hexamer complexity may be a universally

important concept (if we include only canonical capsids [10], the

number of Ch
w2 capsids reduce to zero!). We will shortly discuss

the few ‘‘rule breakers’’.

Designability vs. ease of construction. At this point, it is

important to distinguish design from evolution. From a design

perspective, capsids of any size (or T number) may be easily

‘‘built’’ from an intricate set of rules, like in a LegoH construction

kit, i.e. capsids of any Ch are viable designs. However, we suggest

that, from an evolutionary perspective, the probability of

‘‘existence’’ is contingent upon whether a capsid structure can

be produced via easily manageable assembly mechanisms (‘‘ease of

construction’’). This is especially interesting since capsids with high

Ch do not indicate larger size but just a more complicated design.

E.g., T~12 capsids, although smaller than T~13 and T~16
capsids, are vastly more complicated and under-represented in

Capsid Periodic Table
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nature. Although our complexity-based rules imply a form of

evolutionary pressure, other pressures will likely exist, whose

effects might be overlaid to give a more intricate understanding of

the available capsid distributions (e.g., geometrically simple T~1
capsids, although low in Ch, may be selected against due to

restrictions of genomic size; see Fig. S3 in File S1).

Understanding the Rule Breakers and Charting a Phase
Diagram

Rule breakers. There are two major groups of Ch
w2

outliers/rule-breakers–the small (Tv31) and large (Tw100)

group–that display distinct characteristics. Markedly, most of the

small rule-breakers possess an internal support/core of lipid or

protein [19–21], or display unusually high number of protrusions

and putative proteins associated with their capsomers [22]. These

examples indicate that evolutionary constraints of a geometric

nature placed upon isolated capsids may be overcome by

employing ‘‘universal scaffolds’’ such as protein/bilayer cores

and excessive auxiliary proteins useful in maintaining all distinct

capsomer/hexamer shapes (Recently, another small rulebreaker

not used in our study was also shown to have an internal

membrane [23]). We predict that, generally, the amount of ‘‘extra

subunit density’’ in the electron density of a capsid is directly

related to Ch.

The remaining three (big) capsids [24,25] that break our

geometric rules possess thousands of subunits. This is interesting,

since these capsids are possibly of large enough size that the

‘‘discreteness’’ (or geometric/molecular subunit nature) of the

capsid shell has no influence on capsid morphology, which would

allow for those capsids to be exclusively modeled as elastic shells

[26]. This knowledge is helpful in constructing a proposed phase

diagram for spherical capsids (Fig. 4).

Phase diagram. As described above, it is inevitable that, at a

certain size or triangulation number (T ’ in Fig. 4), the capsid

morphology will not be influenced by molecular/subunit/hexamer

properties (where geometric relationships hold) [26], beyond

which capsids may be modeled exclusively by continuum elasticity

theory. Work using continuum elasticity has shown that only two

capsid shapes must exist–spherical and icosahedral, and that the

transition between them is demarcated by the capsid’s Föppl-von

Karman number (f ) [27,28], which is directly proportional to T

(especially if the size of the subunit is generally the same. This is

because f ~YR2=k [27], where Y and k are bulk properties of the

protein subunit, and R is the capsid’s radius. If we assume that

proteins, at an approximation, have similar size and bulk

properties, then f will be directly proportional to R2, which is

proportional to area, and therefore the number of protein subunits

and hence to T ). It is then interesting that the large (Tw100)

capsids are all icosahedral in shape, no matter what h-k class they

are present in. In our ‘‘phase diagram’’, we also introduce a

theoretical capsid size T ’’ (Fig. 4 arbitrarily assumes that T ’’wT ’)
that differentiates between the sphere-icosahedron boundary

predicted by continuum elasticity theory (the sigmoidal curve in

Fig. 4 denotes the change in sphericity discussed before [27] that is

dependent on f and hence capsid size, T ).

The phase diagram brings to light a curious absence. So far,

‘‘hexamer complexity’’ was used to explain the elusiveness of

certain capsid sizes (the h,kw1 capsids peppered through size or

T-space). There is, however, a swath of the T-space (so far,

between T~31 and 147) where no capsids, to our knowledge,

have been reported. Beyond this T number swath, only purely

icosahedron-shaped capsids have been observed. It will be

interesting to see whether capsids from this region (31vTv147)

will be found in the future, and if so, what their will shapes be.

Figure 3. Periodic discrimination of spherical capsids. (A) As predicted by the inverse Ch rule, capsids with high hexamer complexity are
under-represented in nature as evident in the observed versus unbiased capsid abundances (% of families that display capids of specific Ch). (B) Ch is
not conveniently correlated with capsid size (T ) or class (symbols). (C) However, trends in Ch are easily discerned from the periodic table, where, in
each period (row), T , class number and Ch increase (or remain the same), while trends in other capsid properties such as rigidity may also be
deciphered.
doi:10.1371/journal.pone.0009423.g003

Capsid Periodic Table
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Note that the diagram, although fitting all observed data,

represents one situation where T ’’wT ’ which does not need to

be true (since we could also have T ’’ƒT ’, where ‘‘spherical

capsids’’ in the continuum domain will never exist).

Continuum theory and the phase diagram. In continuum

elasticity theory, f describes capsid morphology which ranges from

completely spherical (for smaller f ) to completely faceted or

icosahedral (for lager f ). In the geometric sense, the sphericity of

capsids in the class system decrease in the following manner: class

2 w class 3 w class 1. Within the geometric domain (0vTvT ’),
it is certain that shape is dictated by capsid class (described by h-k)

and not directly by capsid size (for example, T~16 capsids are

more faceted than T~19 and T~21 capsids; and T~25 capsids

are more faceted than T~28 and T~31 capsids). In light of this,

if the continuum domain ranges to even the smallest capsids, we

predict that f would increase non-monotonically (i.e. f would

fluctuate) through capsid size (T-space) till T ’, after which it will

increase relatively smoothly and monotonically (w.r.t. T ) due to

the absence of geometric (or h-k based) influences (Fig. 4). It will

be interesting to find whether theoretical calculations are able to

reiterate this trend, as it would then be possible to obtain an

estimate for T ’.

Further Implications
Classes, shapes and buckling. Because capsids from

different classes display markedly different geometries, they are

bound to display different physical properties. For example, since

icosahedra and pentakis dodecahedra are geometrically rigid (this

is a basic result of geometry), class 1 and class 3 capsids that

employ such shapes should be unable to undergo buckling

transitions (crucial virus life cycle events) [29,30]. However, we

expect class 2 capsids to be able to undergo such transitions due to

their highly faceted (‘‘harmonica like’’) geometry, which allows for

comfortable sampling of alternative structures. Also, class 1 and 3

capsids display a complete cage of endo angles spanning from

pentamer to adjacent pentamer that serves as a frame to rigidify

the structure. This is not the case for class 2 capsids, where endo

propagations are prematurely terminated. Experimental work on

one class 2 capsid, HK97 [29,30], along with studies on capsid

models (T~1 through 7 and 13) [11] lend credence to this

hypothesis. Still, the existence of naturally buckling capsids of sizes

other than T~7 remains elusive.

T-switching and pleomorphy. The periodic nature of

capsid hexamer content (Fig. 3C) is also useful in understanding

‘‘T-switching’’: a process that permits canonical capsid subunits to

more easily sample capsids containing similar hexamer shapes.

This was shown to be true for a T~4 capsid subunit that, upon

mutation, exclusively formed a range of class 1 capsids [31] that

have similar hexamer shapes. This allows for a segue to

understanding currently intractable and deadly pleomorphic

viruses like ebola and arenaviruses. For example, from the above

T-switching rule, the available diversity of an arenavirus

(described by the observation of T~3,4,9,12 and 16 capsids in

a single sample) [32] may only be explained if we assume that the

biologically relevant form of the arena virus is the T~12 capsid

(since it exclusively displays all hexamer species required for all the

other listed capsid sizes excluding the flat hexamer, which allows

us to assume that all other sizes are residual byproducts of

inefficient T~12 capsid assembly). Other predictions of this sort

are easy to compile from Fig. 3C and remain to be completely

developed, explored and validated.

Non-icosahedral capsids. Although the framework

presented doesn’t appear to readily explain non-isosahedral

capsids (some are just ‘‘slightly’’ non-icosahedral, such as the

natively prolate phi29 capsids [33], while others are wildly

different in form, such as ebola with its natively filamentous

shape), those capsids, like their icosahedral counterparts, also

display capsomer sub-structures (for example phi29 capsids

contain pentamers and hexamers, while there is evidence that

filamentous ebola capsids may contain hexamers as well as

octamers [34]). In light of this, the geometric constraints

analogous to endo angles that affect capsomer shape may be

Figure 4. Spherical capsid phase diagram. We describe two specific capsid sizes that remain to be elucidated (T ’ and T ’’; the diagram arbitrarily
assumes that T ’’wT ’). T ’ describes the limit of the geometric domain, beyond which our geometric assumptions and predictions may not hold. We
expect that all capsid sizes greater than T ’ will be exclusively described by continuum elasticity. We also expect that, beyond T ’ (i.e., in the purely
continuum domain), the Föppl-von Karman number (f ) [27,28] that dictates spherical vs. icosahedral morphology will depend primarily on T , and so
there will be a capsid size (T ’’) that demarcates the allowance for spherical and icosahedral morphologies in the purely continuum regime (the
sigmoidal curve represents the dependence of f and hence morphology on T ). These assumptions consolidate all observed instances of spherical
capsid morphology.
doi:10.1371/journal.pone.0009423.g004
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useful in obtaining insights into non-icosahedral capsid

morphology, behavior, and classification. It will be exciting to

see whether incorporating the non-icosahedral capsids into an

expanded capsid periodic table will be possible.
Ending note. Hexamer complexity (Ch) and the periodic

table provide a framework that explains elusive evolutionary

pressures on capsid design, T-switching, mechanics (rigidity/

maturation) and pleomorphy. We anticipate that many other

features may be overlaid upon the schematic developed here,

allowing for a comprehensive and systematic understanding of,

first, spherical capsids and then virus capsids of varied geometries.

Materials and Methods

Geometric Models
The geometric models depicted in Fig. 2 were obtained by

previous methods [11] that involve the realizations of graphs that

define canonical capsids.

Structural Databases Searched
Data paraphrased in Fig. 3A was compiled from 399 capsid

structures culled to 119 representative structures obtained from the

databases EMDB [17] and VIPER EMDB [35] for Electron

Microscopy structures and VIPERdb [35] for X-ray structures,

along with 4 structures that were not available in any of the

databases (see Section L in File S1 for more details).

Equation for Hexamer Complexity
An equation relating hexamer complexity (Ch) to capsid size

(described by h and k) is derived in the Section J of File S1 and

described as:

Ch ~ D (hdkzk)w1ð ÞzD hw(2hdkzk)ð Þzd(h{k)

zd(h{k)D(kw1)zd(h{k)D(kw1)zD(hw2)

ð1Þ

Where

dx~
1 if x ~ 0

0 otherwise

�
ð2Þ

and

Dawb~P
b

i~0
1{d(a{i)

� �
~

1 if a w b

0 otherwise

�
ð3Þ

Supporting Information

File S1 This supplementary document (1) reviews basic tenants/

axioms developed from previous publications (Mannige and

Brooks III, 2008 and 2009) that are used in the paper, (2) provides

additional data on virus capsid abundances, (3) critically evaluates

the validity of the results presented in the paper and (4) includes a

list of viral capsids used in this study.

Found at: doi:10.1371/journal.pone.0009423.s001 (0.38 MB

PDF)
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