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Virus capsids are highly specific assemblies that are formed from a large number of often chemically
identical capsid subunits. In the present paper we ask to what extent these structures can be viewed as
mathematically tilable objects using a single two-dimensional tile. We find that spherical viruses from a large
number of families—eight out of the twelve studied—qualitatively possess properties that allow their repre-
sentation as two-dimensional monohedral tilings of a bound surface, where each tile represents a subunit. This
we did by characterizing the extent to which individual spherical capsids display subunit-subunit �1� holes, �2�
overlaps, and �3� gross structural variability. All capsids with T numbers greater than 1 from the Protein Data
Bank, with homogeneous protein composition, were used in the study. These monohedral tilings, called ca-
nonical capsids due to their platonic �mathematical� form, offer a mathematical segue into the structural and
dynamical understanding of not one, but a large number of virus capsids. From our data, it appears as though
one may only break the long-standing rules of quasiequivalence by the introduction of subunit-subunit struc-
tural variability, holes, and gross overlaps into the shell. To explore the utility of canonical capsids in under-
standing structural aspects of such assemblies, we used graph theory and discrete geometry to enumerate the
types of shapes that the tiles �and hence the subunits� must possess. We show that topology restricts the shape
of the face to a limited number of five-sided prototiles, one of which is the “bisected trapezoid” that is a
platonic representation of the most ubiquitous capsid subunit shape seen in nature �the trapezoidal jelly-roll
motif�. This motif is found in a majority of seemingly unrelated virus families that share little to no host, size,
or amino acid sequence similarity. This suggests that topological constraints may exhibit dominant roles in the
natural design of biological assemblies, while having little effect on amino acid sequence similarity.
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I. INTRODUCTION

The genomic material of a majority of viruses is enclosed
and protected by spherical capsids. These spherical capsids
are icosahedral in symmetry and are composed of protein
subunits that are often chemically identical. The number of
subunits that exist in a capsid �i.e., the size� is generally
described by the triangulation �T� number, where a spherical
capsid of triangulation number T will possess 60T subunits.
The T number must satisfy the equation T=h2+hk+k2,
where h and k are non-negative integers �1�. Often, capsid
subunits of a specific virus family assemble into capsids of
highly specific size or T number. For example, sesbania mo-
saic virus capsid subunits are known to spontaneously form
T=3 spherical capsids �2�, while the subunits belonging to
the birnaviridae family form larger T=13 capsids �3�; differ-
ent capsid sizes are formed on account of subunits interact-
ing within the capsid in different but quasiequivalent man-
ners. These rules of quasiequivalence, which are at the core
of the description of the organization of such capsids, have

been long standing and were proposed by Caspar and Klug
in 1962 �1�.

As indicated by the rules of quasiequivalence, even the
smallest virus capsids must be made up of at least 60 protein
subunits, each containing thousands of atoms themselves,
making the analysis of structural and dynamical properties of
these systems in all-atom form computationally difficult. For
example, state of the art numerical simulations of a T=1
all-atom capsid were performed for more than 50 ns at the
approximate rate of 1.1 ns per day on 48 processors �4�.
Although a testament to parallel processivity, the simulation
was also a testament to the current inadequacies, for virus
capsids must be simulated for more than 1 ms �100 000 times
more� to record important aspects such as assembly and
structural changes. Coarse-graining of such all-atom systems
�where atom clusters are grouped and treated as simpler
pseudoatoms� reduces the system size drastically �5� but still
falls short at the microsecond time scale �also, these systems
pose the new problem of correct parametrization of the
coarse-grain force field� �5�. Furthermore, biochemical and
biophysical laboratory studies of important events such as
capsid maturation and assembly offer few clues to the dy-
namic mechanisms involved. These complications have mo-
tivated a plethora of theoretical attempts aimed at under-
standing virus capsids using necessary and simplifying
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geometric assumptions regarding the nature of capsid assem-
blies.

The use of simplified geometric models such as disks on a
sphere �6,7�, simple van der Waals spheres �8�, Stockmayer
fluids �9�, trapezoidal subunits �10,11�, tiles �12�, and simple
bonding units �13–15� has enabled the application of physics
and mathematics in the exploration of various capsid phe-
nomena such as assembly kinetics, capsid subunit stoichiom-
etry, quasiequivalence, and assembly nucleation events. Al-
though many of these models accurately describe specific
phenomenological aspects of a capsid �such as disks on a
sphere explaining the emergence of icosahedral symmetry
�6,7��, a simplified capsid model that represents a broad array
of properties of many natural capsids in an accurate manner
�i.e., a model possessing “transferability”� has yet to be de-
scribed.

We are interested in understanding the extent to which
simplified models may represent spherical capsids in nature.
This problem will be addressed in the first half of the paper,
where we will show that a large number of virus capsids
�“group 1” capsids; see Table I� found in nature can, indeed,
be modeled as simplified two-dimensional tilings of a bound
surface by a single prototile, i.e., we will show that a large
number of virus capsids may be represented by monohedral
tilings. Capsids that follow these monohedral tilability rules
�along with the quasiequivalence rules� we call canonical
capsids. Mathematical studies of these monohedral tilings
�canonical capsids�, using tools such as tiling theory previ-
ously used in more specialized studies �12,16�, are expected
to relate the physical and structural properties obtained di-
rectly to a large number of capsids found in nature �corre-
sponding to the group 1 capsids�.

As an example of one mathematical application, the sec-
ond part of our paper asks: What are the shapes available to
a spherical capsid subunit as dictated by topological rules?
Since the subunit is directly represented by a canonical

capsid prototile, one only needs to ask how topology dictates
the types of tiles that the canonical capsid may have. This is
answered using graph theory, tiling theory, and the rules of
spherical capsid equivalence laid down by Caspar and Klug
�1�. From this, we show that the expected canonical capsid
subunit shape strongly reflects the trapezoidal subunit shapes
found in natural capsids.

II. MATERIALS AND METHODS

A. Virus capsids analyzed

For our analyses, we used all capsids present in the VI-
PERdb virus capsid repository �as of April 2007� �17� com-
prised of chemically identical subunits with triangulation
numbers greater than 1. Capsids denoted by the following
Protein Data Bank �PDB� IDs �also VIPERdb IDs� were used
in the analysis �65 in number�: 1aq3, 1aq4, 1auy, 1bms,
1c8n, 1cwp, 1ddl, 1dwn, 1dzs, 1e57, 1e7x, 1f15, 1f2n, 1f8v,
1frs, 1fr5, 1gav, 1gkv, 1gkw, 1ihm, 1js9, 1kuo, 1laj, 1mst,
1mva, 1mvb, 1ng0, 1nov, 1ohf, 1ohg, 1opo, 1qbe, 1qgt, 1qjz,
1sva, 1sid, 1sie, 1smv, 1u1y, 1w39, 1wce, 1x35, 1za7, 1zdh,
1zdi, 1zdj, 1zdk, 1zse, 2b2d, 2b2e, 2b2g, 2bbv, 2bu1, 2frp,
2fs3, 2fsy, 2ft1, 2gh8, 2ms2, 2tbv, 4sbv, 5msf, 6msf, 7msf,
fhv. �The structure named fhv is not present in the PDB and
was deposited into the VIPERdb as a personal communica-
tion.�

B. Definition of a monohedral tiling

We may say that a two-dimensional monohedral bound
tiling is one where identically shaped �congruent� tiles come
together onto a bound �topologically spherical� surface such
that no tile-tile overlaps and holes are found. In slightly more
specific terms, the term “monohedral two-dimensional tiling”
refers to the classical strongly balanced tiling by a single
prototile. Strongly balanced tiling means that each tile must

TABLE I. The list of families studied along with their triangulation �T� numbers, average overlapM

percentage �% O�, average percentage holes �% H�, and average subunit variance in angstroms �V� within
each family. The line divides the families into two groups: �1� families whose capsids may be representable
by monohedral tilings �with relatively low % O, % H, and V�, and �2� capsids that cannot be represented as
monohedral tilings, i.e., capsids that possess holes, gross overlaps, and subunit variability.

Group Family name T % O % H V

1 Tombusviridae 3 0.421 0.717 0.426

Sobemoviridae 3 0.757 0.218 0.605

Birnaviridae 13 0.350 0.870 0.648

Nodaviridae 3 4.632 0.382 0.421

Tymoviridae 3 0.242 1.455 1.075

Siphoviridae 7l 3.860 2.777 1.138

Bromoviridae 3 2.253 3.916 1.175

Caliciviridae 3 7.002 2.502 1.189

2 Tetraviridae 4 12.504 0.001 1.052

Hepadnaviridae 4 5.653 6.769 0.780

Leviviridae 3 15.191 4.320 2.028

Polyomaviridae 7d 16.943 5.033 2.524
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be a topological disk �polygon�, the assembled tilings must
represent a two-manifold �tiles must not overlap�, edges can-
not be disconnected �i.e., it is an edge-edge tiling�, and they
must be uniformly bounded and balanced �introduced by
Grünbaum and Shepherd to preclude “paradoxical” tilings in
their authoritative treatise on tilings and patterns �18��.
Monohedrality imposes the need for just one tile shape to
exist within the tiling; however, each instance of this shape
need not be related by any symmetry operation. For an un-
derstanding of edge-to-edge monohedral tilings please refer
to the review by Grünbaum and Shephard �19�.

C. Characterizing tilability

We first need to characterize the extent to which virus
capsids display holes and overlaps. Although this may be
qualitatively done visually, we chose to develop a simple
metric for quantitative characterization. In this method, we
projected each protein atom present in the all-atom capsid
structure onto a sphere whose radius equals the average ra-
dius of the capsid shell �depicted in Fig. 1�. We then cast a
�1 Å2 square-latticed net of dots—or a “dot matrix”—onto
the shell and calculated the percentage of dots that were
present within holes and subunit-subunit overlaps. The ma-
trix created possessed no icosahedral symmetry and was not
created by triangulations of an icosahedron �a heuristic ap-
proach was used instead�. The volume of each subunit was
defined by the van der Waals radii of the constituent atoms
along with a 1.4 Å addition accounting for water. These per-

centages are obtained for each virus capsid. The density of
the dots is large enough for a high-resolution characterization
of holes and overlaps, especially given that the smallest atom
in our structures is the carbon atom with radius �1.7 Å.

D. Characterizing monohedral tilability

Assuming that the capsid is tilable, monohedral tilability
is found when the shape of each tile �or subunit� is the same
�or congruent�. To investigate tile congruence, we look at
variability within subunits in a capsid, i.e., we structurally
compare subunits within the asymmetric unit of the crystal
structure to each other �since the asymmetric unit possesses
the maximally different structures within the crystal struc-
ture�. Note that our interest lies in characterizing structural
changes in the entire subunit, and not localized conforma-
tional changes which alter the intersubunit interactions in an
otherwise structurally rigid subunit, e.g., the order-disorder
transitions in the tomato bushy stunt virus capsid �reviewed
in �20��. This is because those structural changes may be
manifested in the tiling as subunit-subunit dihedral angle
changes.

In the final section of this paper, we use topology and
tiling theory to compile a list of projected �two-dimensional�
shapes available to the spherical virus capsid subunit.

III. RESULTS AND DISCUSSION

A. Tilability of natural spherical capsids

The extent to which capsids possess any of the three
properties—�1� holes, �2� overlaps once projected onto a
sphere, and �3� architectural variability—is used as a metric
for tilability.

Using methods described in Sec. II, four values were cal-
culated for each capsid and plotted as histograms in Fig. 2.
The four graphs probe the following four properties: �a�
monohedrality �subunit variability within a capsid measured
by an averaged root mean squared deviation value in ang-

A

B

tiled
(canonical)

overlaps
(non-canonical)

holes
(non-canonical)

FIG. 1. �Color� Analysis of the tilability of a capsid. �a� The
three-dimensional all-atom model is projected onto a sphere of av-
erage shell radius �colored to represent individual subunits� upon
which a net, or dot matrix, is cast �visible in the subunit cleared
area�. These dots are used in calculating the �areawise� percentage
of holes and overlaps in the capsid shell. �This projected capsid was
derived from PDB ID 1smv�. �b� The presence of either holes
�right� or subunit-subunit overlaps �middle� will result in the inabil-
ity to represent these structures as well-behaved two-dimensional
tilings �left�.
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FIG. 2. There are a large number of spherical capsids, high-
lighted by the dashed rectangles, that possess one of the three re-
quirements of monohedral tilability.
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stroms�, �b� the amount of breaks within the capsid shell �%
holes�, �c� the percentage of subunit-subunit overlap within
the capsid, and �d� the percentage of gross subunit overlap,
denoted by overlapM �which was calculated by first shrinking
each pruned subunit1 by a scaling factor of 0.83 and then
calculating the percentage overlaps without the 1.4 Å addi-
tion�. The last graph was used to differentiate between those
capsids that have normal overlaps—caused by interdigitation
of neighboring amino acid residues into each other at the
subunit-subunit interfaces—and gross structural �subunit-
subunit� overlaps. It is clear that even in the best-behaved
two-dimensional �2D� representable virus capsid, residue-
residue interdigitations are inevitable; it is only the gross
subunit-subunit overlaps that pose a hindrance to 2D tiling
representations. In all of the metrics used, low values indi-
cate that the capsid possesses little structural variability, neg-
ligible holes, or negligible overlaps.

It is immediately evident from the histograms that there is
one group of capsids �highlighted by the dashed squares�
where at least one of the three properties of monohedral ti-
lability is possessed. The next question is whether some
capsids possess all three properties �making them represent-
able by monohedral tilings�.

The average percent overlapM, percent holes, and subunit
structural variability were calculated for each virus family
and these values were plotted against each other, resulting in
the three graphs in Fig. 3�a�–3�c�. These graphs indicate that
all three properties are positively correlated with each other.
Conversely, as we move away from any one of the three
properties, the other two properties tend to weaken too, with
the exceptions being the families tetraviridae and hepad-
naviridae.

It is evident that there are capsids �belonging to families
in group 2 in Table I� that present either high structural vari-
ability, subunit-subunit overlaps �tetraviridae�, holes �hepad-
naviridae�, or all three characteristics �leviviridae and polyo-
maviridae� that prevent them from being represented as
monohedral 2D bound tilings, or canonical capsids. A levivi-
rus has been represented in Fig. 3�d� as an example of the
holes and overlaps found in group 2 capsids.

Importantly, there are a large number of capsids �capsids
belonging to 8 of the 12 families studied; the first group in
Table I� that possess all three qualities of monohedral tilabil-
ity and “reside” within all the dashed-line boxes in Fig. 2.
These capsids may be represented by bound monohedral til-
ings that we call canonical capsids.

Although the bimodality of the histogram distributions in
Fig. 2 �into group 1 and group 2� is evident, there is some
group 1–group 2 overlap indicating that capsids close to the
border �such as capsids belonging to bromoviridae and cali-
civiridae families of the group 1� may display subtle charac-
teristics of the other class. This is expected when attempting
to classify a biological system.

Our interest now is to show that predictions made on the
platonic group 1 virus capsid—discrete mathematical models

or canonical capsids—can, indeed, be related back to the
capsids belonging to families in group 1 of Table I.

B. Definition of the canonical capsid

Canonical capsids are monohedral tilings or polyhedra
where the tiles or faces within one polyhedron are related to
each other by the rules of quasiequivalence �1�. Spherical
capsids adhering to this paradigm possess 60T subunits, and
may also be thought of as groupings of 12 pentamers and
10�T−1� hexamers. The manner in which one may go about
making a Caspar-Klug capsid is by starting off with a hex-
agonal lattice and, based on a set of rules, converting specific
hexagons into pentagons in a process that introduces curva-
ture �or a disclination� to the surface. Please refer to �21� for
a broader understanding of the geometric and physical basis
of such transformations. With these concepts in mind, we can
characterize the types of two-dimensional �projected� shapes
that a subunit must possess in order to assemble into a ca-
nonical capsid of a specific T number.

C. Characterization of the subunit shape

A characterization of the types of shapes available to the
canonical capsid subunit will be attempted by sequentially
answering two more tractable questions. First, we will find
the number of edges ��� that the canonical capsid prototile
may possess. Then we search for specific tilings �and their
allowable shapes� that are in accordance with the canonical
capsid definition and the allowable �’s. However, we need to
formulate a representation of the subunit that enables these
questions to be answered.

1“Pruned,” here, means that the those amino acids within a sub-
unit that undergo order-disorder transitions �20�, which partake in
the modifying of one interface, are ignored in the assay.

0 0.5 1 1.5 2 2.5 3
<variability>F (Å)

0

5

10

15

20

<o
ve
rla
p>

F
(%
)

0 5 10 15 20
<overlap>F (%)

0
1
2
3
4
5
6
7

<h
ol
es
> F
(%
)

0 0.5 1 1.5 2 2.5 3
<variability>F (Å)

0
1
2
3
4
5
6
7

<h
ol
es
> F
(%
)

A B

C D

FIG. 3. �a�–�c� Dependence of one of three requirements for
monohedral tilability plotted versus each of the others using family-
averaged values. The solid lines are added to emphasize the trends.
�d� An example of a capsid belonging to the Leviviridae family
�PDB ID 1mst�, which violates all of the requirements of monohe-
dral tilability, as indicated by excessive overlap of black and white
subunits and large holes at five- and pseudosixfold symmetry axes.
�Subunit coloring: A ,B, black; C, white.�
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Figure 4�a� shows a representation of the prototile with
one quasiequivalent vertex �circled�, two straight edges, and
one curved edge. The curved edge may possess any number
of trivalent vertices �allowing this structure to have an arbi-
trary number of edges and vertices�. This has been done so as
not to limit the number of shapes of the tile �dictated by the
number of vertices or edges�. Being the center of either a
pentamer or hexamer �Figs. 4�b� and 4�c��, each quasiequiva-
lent vertex may be either five- or six-valent. The number of
vertices and edges ��� may be dependent on various proper-
ties of the capsid such as the size or T number.

The ability to describe capsids as monohedral tilings �or
polyhedra� and our description of a �-unrestricted subunit
allow the canonical capsid to be systematically analyzed us-
ing simple topological tools such as Euler’s polyhedral for-
mula.

1. The number of sides (�)

All canonical capsids can be thought of, graph theoreti-
cally, as triangulations of the icosahedron. As the icosahe-
dron is convex, it can be projected as a planar graph onto a
two-dimensional plane �as a Schlegel diagram, for example
�22��. This, in turn, means that the graph representation of
every canonical capsid is expected to be planar, whether or
not the three-dimensional canonical capsid is convex. From
this it follows that the graphs describing connectivity for
canonical capsids must abide by Euler’s polyhedral formula.

Euler’s polyhedral formula shows that various elements
within convex and certain nonconvex polyhedra may be re-
lated to each other in a predictable manner. Specifically, the
number of vertices �V�, edges �E�, and faces �F� of such a
polyhedron may be related through the following equation:

V − E + F = 2. �1�

All tilings describing the canonical capsid must satisfy this
equation. This offers a direct relationship between the num-
ber of subunits �F� and the allowable number of interactions
or edges per tile ���. We will be able to relate the two terms
�F and �� by relating V, E, and F to the number of sides ���,
and the size of the capsid �T�. From the general definitions of

quasiequivalent spherical virus capsids �discussed above�,
we will establish the relationships between V, E, F, �, and T
to establish an expression for �.

Since we know that the number of faces corresponds to
the number of subunits in the canonical capsid, we have

F = 60T . �2�

Also, as this is an edge-edge tiling, each edge is shared by
exactly two faces. So the number of edges is

E = F�/2 = 30T� . �3�

The Caspar and Klug rules of capsid assemblies shows that
there are 12 five-valent vertices and 10�T−1� six-valent ver-
tices �1� within the canonical capsid �we call these the cen-
troid vertices, which are VC in number�. So the number of
centroid vertices

VC = 10�T − 1� + 12 = 10T + 2. �4�

We know that each prototile must have exactly one centroid
vertex. Also, from our earlier definition of the prototile, the
rest of the ��−1� vertices are trivalent in nature. Therefore,
the number of trivalent vertices are equal to

VR = 60T�� − 1�/3 = 20T�� − 1� . �5�

Finally, from Eqs. �4� and �5�, we have the total number of
vertices

V = VR + VC = 2 + 20T� − 10T . �6�

Substituting Eqs. �6�, �3�, and �2� in Eq. �1�, we get

�2 + 20T� − 10T� − �30T�� + 60T = 2. �7�

Further reducing this equation, the T’s cancel out and we get

� = 5. �8�

Via simple topological relationships, we obtained an in-
variant geometric characteristic ��� that is independent of the
T number. Using the assumptions of a fixed number of faces,
quasiequivalence, and trivalency for nonquasiequivalent ver-
tices �i.e., modeling a 5/6,3-vertex polyhedron with 60T
faces�, topology dictates that only a five sided prototile will
be able to assemble into any sized �T-numbered� canonical
capsid �with the modification of subunit-subunit interaction
angles�. The number of sides ��� is invariant of the triangu-
lation �T� number, which shows that a subunit may be modi-
fied to assemble into capsids of non-native T numbers.

2. The shapes available to a five-sided canonical capsid subunit

As per the definition of the canonical capsid, any prototile
that can tile a bound canonical capsid should, by the rules of
quasiequivalence, also tile a two-dimensional hexavalent lat-
tice �a hexagonal lattice containing hexavalent vertices�
�1,21�. So our second query is simplified: How many five-
sided prototiles may assemble into a hexavalent lattice?

The tiling of 2D surfaces by convex pentagons has been a
subject studied at least since the early 20th century. In the
early 1980s, Grünbaum and Shepherd enumerated a list of 13
known convex pentagonal edge-edge tilings, and, since then,
one more has been added to that list �23,24�. We searched the

FIG. 4. Abstract representation of a canonical capsid subunit,
represented here in subunit form along with the types of subunit-
subunit interactions �a� and in capsomere �hexamer and pentamer�
arrangements that are formed from type II interactions �b�,�c�. The
final capsid is composed of 12 pentamers and 10�T−1� hexamers
that interact with each other via type I interactions �1�. For our
studies, in order to not constrain the number of subunit vertices �and
hence edges�, we define the curved edge as one with a potentially
unlimited number of vertices �with a lower bound of 2�.
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resulting catalogs as listed by Sugimoto and Ogawa �23� for
convex pentagonal prototiles that can assemble into a
hexavalent lattice, and found only one tiling to fit that crite-
rion �known in �23� as type 5; shown here in Fig. 5�a��.
Therefore, only one type of tiling among the known ones
�the type 5 tiling� will be allowed to form a canonical capsid
of any size.

D. Further implications

1. The ubiquitous trapezoid shape emerges

Interestingly, this tiling is equivalent �combinatorially� to
the tiling seen in Fig. 5�b�, which represents a 2D projection
of the trapezoid structure seen in nature. This subunit shape
is widely distributed in the spherical capsid world �25� and is
found in virus families that differ greatly in sequence space
�down to 0% sequence identity�, host specificity �insects,
birds, mammals�, and capsid size �with recorded T numbers
ranging from 1 through 13�;2 An example of one of these
subunits is shown in Figs. 5�c� and 5�d�. This suggests that
topological constraints may play dominant roles in the natu-
ral design of the shape of virus capsid subunits. This, in turn,
means that the chance that two proteins may have evolved
from distinct lineages into the same structural shape cannot
be dismissed.

2. Rationalization of the need for a five-sided subunit

One could look at the need for a five-sided subunit intu-
itively from a symmetry-oriented standpoint. There are two

kinds of icosahedral point group symmetries—full �or
achiral� icosahedral symmetry and rotational �or chiral�
icosahedral symmetry. Although both point group symme-
tries have the same number of two-, three-, and fivefold axes
of rotation, they differ in the number of mirror planes they
possess; the full icosahedral symmetry group possesses 15
mirror planes while the rotational icosahedral symmetry
group possesses none. Due to the chirality of biological mac-
romolecules, it follows that only the chiral icosahedral sym-
metry may exist.

Figure 6 represents versions of the three-, four-, and five-
sided prototile in its hexameric form �Fig. 6�a��, which is a
precursor to the canonical capsid, and the prototile itself
�Fig. 6�b��. It is immediately evident that the number of pos-
sible mirror symmetries �shown as dashed lines� diminishes
to zero at �=5. As chirality �or the absence of mirror sym-
metries� is crucial within the biological world, �=5 is the
only viable option for virus capsid subunits; and from �=5,
the trapezoid of the tiling is automatically obtained.

3. Canonical capsids do represent group 1 capsids

All capsids present within group 1 families described in
Table I—the capsids representable by monohedral tilings—
also possess trapezoidal shapes. This means that the predic-
tions made by analyzing canonical capsids, and the empirical
evidence obtained from the shapes of group 1 capsids indi-
cate a congruence between the mathematical models and
natural capsids. Thus, the canonical capsid may, in fact, be
used to represent and study capsids belonging to group 1
families of Table I. Furthermore, it is interesting to note that
capsids belonging to families such as picornaviridae and co-
moviridae that possess chemically distinct subunits in the
capsid asymmetric unit, but that appear to have no gross
structural overlaps and holes, also possess the familiar trap-
ezoidal subunit motif �26�.

Capsids that possess subunit-subunit holes, overlaps, or
structural variability �i.e., group 2 capsids� were found to

2Note that, although the trapezoid shape is four sided, in the con-
text of the capsid arrangement, the long edge interacts with two
other subunits. Thus, graph theoretically, a vertex must bisect that
long edge, giving us a bisected trapezoid.

FIG. 5. Pentagonal type 5 tilings. Type 5 tiles �e.g., �a� and �b��
are the only known five-sided tiles that possess six-valent vertices.
The interacting edges of the prototile in both �a� and �b� have been
marked with one, two, and three dashes. Such edges interact with
identically labeled edges of neighboring tiles to form interfaces
within dimers, trimers, and hexamers, respectively. Interestingly, a
version of this tile �b� resembles a very commonly seen subunit
shape found in nature depicted as a space-filled subunit �c� and a
subunit within its capsid environment �d� �structure used: 1vak of
the sobemoviridae family�.

σ = 3 σ = 4 σ = 5
A

B

FIG. 6. Relationship between mirror symmetry elements and the
number of edges ��� per hexavalent tile. This image illustrates
trigonal, tetragonal, and pentagonal tiles in �a� the hexavalent form
and �b� as a single tile �along with the two-, three-, and sixfold
symmetry relationships denoted�. The dashed lines in the figure
indicate possible mirror planes cutting the plane of the paper per-
pendicularly. It is immediately evident that the hexameric cluster
for only �=5 has no possible mirror symmetries, which is crucial in
the chiral-centric biological world.
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possess, largely, nontrapezoidal-shaped subunits. Most no-
table among these are the polyomaviridae family viruses
�27,28� that not only break the rules of monohedral tilability,
but also break the otherwise longstanding rules of
quasiequivalence. We propose that the breaking of Caspar
and Klug’s rules of quasiequivalence �1� is possible only
with the use of �1� chemically distinct subunits or �2� sub-
units that grossly break the rules of monohedral tilability.

4. Divergence or convergence?

The trapezoidal subunit shape is seen within capsids shar-
ing little to no similarity in amino acid sequence, host speci-
ficity, genome type �RNA, DNA�, and size �T number�. Our
findings raise interesting questions about the evolutionary
reason for this structure’s prevalence among such diverse
virus families. It is widely believed that all these capsids
arose from a single protoviral strain �25�. However, we show
that the bisected trapezoid is the only subunit shape �among
other type 5 tilings� that is allowable within canonical
capsids, i.e., it appears as though the trapezoid is the only
shape available to a capsid that attempts to maximize, via
edge-edge tilings, the amount of interactions, while minimiz-
ing the extent of holes, and simultaneously reducing design
complexity by being relatively structurally invariant or
monohedral �all of these features are acceptable from a free
energetic point of view�. Consequently, it is not improbable
that distinct families evolved in parallel and encountered,
independently, the trapezoidal-shaped jelly-roll architecture,
i.e., convergent evolution is a distinct possibility, especially
in systems with general but stringent constraints �such as
topological constraints�.

5. Future applications

Virus tiling theory, as pioneered by Twarock, has already
been used to explain interesting assembly-related properties
of capsids that break the rules of quasiequivalence by dis-
playing only pentamers and no hexamers �12,29–31�. Spe-
cifically, they showed that capsids belonging to the polyoma-
viridae family must be represented as bound tilings formed
from two distinct subunit shapes or tiles �12,29�, i.e., capsids
from this family cannot be represented by monohedral til-
ings, which corroborates the classification of these capsids as
group 2 in Table I. Importantly, Twarock and colleagues

showed that one may characterize the “assembly pathways”
of these tilings using mathematical methods �30,31�. Those
studies were primarily applied to capsids belonging to the
polyomaviridae family.

Our findings show that canonical capsids—monohedral
bound trapezoidal tilings that follow the rules of
quasiequivalence—may be used to represent a large number
of capsids, allowing for a physical understanding of those
capsids in a manner that builds upon the techniques intro-
duced by Twarock and colleagues. Mathematical and physi-
cal investigations of these canonical capsids are currently
being pursued.

IV. CONCLUSION

We have shown that a majority of capsids �comprising
eight out of twelve structurally characterized families� may
be represented as monohedral tilings �canonical capsids�,
thereby allowing the use of many fields of mathematics �such
as topology, tiling theory, graph theory, etc.� to explain
capsid structure and dynamics. We demonstrated that only a
specific five-sided prototile is compatible with bound mono-
hedral tilability and the definitions of quasiequivalence of
virus capsids. This we did using simple topology, graph
theory, and symmetry concepts. Of the possible tilings,
one—of trapezoidal shape—was found to be displayed by
capsid subunits within every one of the eight tilable virus
capsid families. This trapezoidal subunit shape is found in
capsids sharing little to no sequence similarity, host specific-
ity, genome type �RNA, DNA�, and size �T number�. These
results raise interesting questions about the nature of the non-
canonical capsids, and the divergent and convergent nature
of the group 1 capsids with respect to evolution and design.
More importantly, our result that the expected shape of the
canonical capsid accurately reflects the shape of the group 1
capsid subunits found in nature lends credence to usefulness
of the bound monohedral tiling model of capsids �the “ca-
nonical capsid”�.
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